Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,7 +7,8 @@ import pandas as pd
|
|
| 7 |
from numpy.linalg import norm
|
| 8 |
import matplotlib.pyplot as plt
|
| 9 |
import os
|
| 10 |
-
|
|
|
|
| 11 |
# Function to load the Random Forest model
|
| 12 |
@st.cache_resource
|
| 13 |
def load_model():
|
|
@@ -54,35 +55,21 @@ def calculate_angles(landmarks):
|
|
| 54 |
|
| 55 |
# Function to process image and predict alphabet
|
| 56 |
def process_and_predict(image):
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
return None, None
|
| 60 |
-
|
| 61 |
-
try:
|
| 62 |
-
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 63 |
-
except cv2.error:
|
| 64 |
-
st.error("Failed to convert the image. The image might be corrupted or in an unsupported format.")
|
| 65 |
-
return None, None
|
| 66 |
-
|
| 67 |
-
try:
|
| 68 |
-
results = hands.process(image_rgb)
|
| 69 |
-
except Exception as e:
|
| 70 |
-
st.error(f"An error occurred while processing the image: {str(e)}")
|
| 71 |
-
return None, None
|
| 72 |
-
|
| 73 |
-
if not results.multi_hand_landmarks:
|
| 74 |
-
st.warning("No hands detected in the image.")
|
| 75 |
-
return None, None
|
| 76 |
-
|
| 77 |
-
landmarks = np.array([[lm.x, lm.y] for lm in results.multi_hand_landmarks[0].landmark])
|
| 78 |
-
landmarks_normalized = normalize_landmarks(landmarks)
|
| 79 |
-
angles = calculate_angles(landmarks_normalized)
|
| 80 |
|
| 81 |
-
|
| 82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
-
|
| 85 |
-
return probabilities, landmarks
|
| 86 |
|
| 87 |
# Function to plot hand landmarks
|
| 88 |
def plot_hand_landmarks(landmarks, title):
|
|
@@ -98,20 +85,24 @@ def plot_hand_landmarks(landmarks, title):
|
|
| 98 |
ax.axis('off')
|
| 99 |
return fig
|
| 100 |
|
| 101 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
|
|
|
|
|
|
| 103 |
st.title("ASL Recognition App")
|
| 104 |
|
| 105 |
-
#
|
| 106 |
-
st.
|
| 107 |
-
|
| 108 |
-
st.
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
image_files = os.listdir(image_directory)
|
| 112 |
-
st.write("Files in the image directory:", image_files)
|
| 113 |
-
else:
|
| 114 |
-
st.error(f"The directory '{image_directory}' does not exist.")
|
| 115 |
|
| 116 |
# Create tabs for different functionalities
|
| 117 |
tab1, tab2 = st.tabs(["Predict ASL Sign", "View Hand Landmarks"])
|
|
@@ -121,22 +112,26 @@ with tab1:
|
|
| 121 |
uploaded_file = st.file_uploader("Upload an image of an ASL sign", type=["jpg", "jpeg", "png"])
|
| 122 |
|
| 123 |
if uploaded_file is not None:
|
| 124 |
-
|
| 125 |
-
with col1:
|
| 126 |
image = cv2.imdecode(np.frombuffer(uploaded_file.read(), np.uint8), 1)
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
probabilities, landmarks = process_and_predict(image)
|
| 131 |
-
|
| 132 |
-
if probabilities is not None and landmarks is not None:
|
| 133 |
-
st.subheader("Top 5 Predictions:")
|
| 134 |
-
top_indices = np.argsort(probabilities)[::-1][:5]
|
| 135 |
-
for i in top_indices:
|
| 136 |
-
st.write(f"{model.classes_[i]}: {probabilities[i]:.2f}")
|
| 137 |
|
| 138 |
-
|
| 139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
|
| 141 |
with tab2:
|
| 142 |
st.header("View Hand Landmarks")
|
|
@@ -150,19 +145,22 @@ with tab2:
|
|
| 150 |
cols = st.columns(min(3, len(selected_alphabets)))
|
| 151 |
for idx, alphabet in enumerate(selected_alphabets):
|
| 152 |
with cols[idx % 3]:
|
| 153 |
-
image_path = os.path.join(
|
| 154 |
st.write(f"Attempting to load: {image_path}")
|
| 155 |
if os.path.exists(image_path):
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
|
|
|
|
|
|
|
|
|
| 166 |
else:
|
| 167 |
st.error(f"Image not found for {alphabet}")
|
| 168 |
|
|
|
|
| 7 |
from numpy.linalg import norm
|
| 8 |
import matplotlib.pyplot as plt
|
| 9 |
import os
|
| 10 |
+
import base64
|
| 11 |
+
|
| 12 |
# Function to load the Random Forest model
|
| 13 |
@st.cache_resource
|
| 14 |
def load_model():
|
|
|
|
| 55 |
|
| 56 |
# Function to process image and predict alphabet
|
| 57 |
def process_and_predict(image):
|
| 58 |
+
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 59 |
+
results = hands.process(image_rgb)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
+
if results.multi_hand_landmarks:
|
| 62 |
+
landmarks = np.array([[lm.x, lm.y] for lm in results.multi_hand_landmarks[0].landmark])
|
| 63 |
+
landmarks_normalized = normalize_landmarks(landmarks)
|
| 64 |
+
angles = calculate_angles(landmarks_normalized)
|
| 65 |
+
|
| 66 |
+
angle_columns = [f'angle_{i}' for i in range(len(angles))]
|
| 67 |
+
angles_df = pd.DataFrame([angles], columns=angle_columns)
|
| 68 |
+
|
| 69 |
+
probabilities = model.predict_proba(angles_df)[0]
|
| 70 |
+
return probabilities, landmarks
|
| 71 |
|
| 72 |
+
return None, None
|
|
|
|
| 73 |
|
| 74 |
# Function to plot hand landmarks
|
| 75 |
def plot_hand_landmarks(landmarks, title):
|
|
|
|
| 85 |
ax.axis('off')
|
| 86 |
return fig
|
| 87 |
|
| 88 |
+
# Function to create a download link for the README file
|
| 89 |
+
def get_binary_file_downloader_html(bin_file, file_label='File'):
|
| 90 |
+
with open(bin_file, 'rb') as f:
|
| 91 |
+
data = f.read()
|
| 92 |
+
bin_str = base64.b64encode(data).decode()
|
| 93 |
+
href = f'<a href="data:application/octet-stream;base64,{bin_str}" download="{os.path.basename(bin_file)}">Download {file_label}</a>'
|
| 94 |
+
return href
|
| 95 |
|
| 96 |
+
# Streamlit app
|
| 97 |
+
st.set_page_config(layout="wide")
|
| 98 |
st.title("ASL Recognition App")
|
| 99 |
|
| 100 |
+
# Add README button
|
| 101 |
+
readme_col1, readme_col2 = st.columns([1, 3])
|
| 102 |
+
with readme_col1:
|
| 103 |
+
st.markdown("## How it works")
|
| 104 |
+
with readme_col2:
|
| 105 |
+
st.markdown(get_binary_file_downloader_html('readme.md', 'README'), unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
# Create tabs for different functionalities
|
| 108 |
tab1, tab2 = st.tabs(["Predict ASL Sign", "View Hand Landmarks"])
|
|
|
|
| 112 |
uploaded_file = st.file_uploader("Upload an image of an ASL sign", type=["jpg", "jpeg", "png"])
|
| 113 |
|
| 114 |
if uploaded_file is not None:
|
| 115 |
+
try:
|
|
|
|
| 116 |
image = cv2.imdecode(np.frombuffer(uploaded_file.read(), np.uint8), 1)
|
| 117 |
+
if image is not None:
|
| 118 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
| 119 |
+
probabilities, landmarks = process_and_predict(image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
+
if probabilities is not None and landmarks is not None:
|
| 122 |
+
st.subheader("Top 5 Predictions:")
|
| 123 |
+
top_indices = np.argsort(probabilities)[::-1][:5]
|
| 124 |
+
for i in top_indices:
|
| 125 |
+
st.write(f"{model.classes_[i]}: {probabilities[i]:.2f}")
|
| 126 |
+
|
| 127 |
+
fig = plot_hand_landmarks(landmarks, "Detected Hand Landmarks")
|
| 128 |
+
st.pyplot(fig)
|
| 129 |
+
else:
|
| 130 |
+
st.write("No hand detected in the image.")
|
| 131 |
+
else:
|
| 132 |
+
st.error("Failed to load the image. The file might be corrupted.")
|
| 133 |
+
except Exception as e:
|
| 134 |
+
st.error(f"An error occurred while processing the image: {str(e)}")
|
| 135 |
|
| 136 |
with tab2:
|
| 137 |
st.header("View Hand Landmarks")
|
|
|
|
| 145 |
cols = st.columns(min(3, len(selected_alphabets)))
|
| 146 |
for idx, alphabet in enumerate(selected_alphabets):
|
| 147 |
with cols[idx % 3]:
|
| 148 |
+
image_path = os.path.join('asl test set', f'{alphabet.lower()}.jpeg')
|
| 149 |
st.write(f"Attempting to load: {image_path}")
|
| 150 |
if os.path.exists(image_path):
|
| 151 |
+
try:
|
| 152 |
+
image = cv2.imread(image_path)
|
| 153 |
+
if image is not None:
|
| 154 |
+
probabilities, landmarks = process_and_predict(image)
|
| 155 |
+
if landmarks is not None:
|
| 156 |
+
fig = plot_hand_landmarks(landmarks, f"Hand Landmarks for {alphabet}")
|
| 157 |
+
st.pyplot(fig)
|
| 158 |
+
else:
|
| 159 |
+
st.error(f"No hand detected for {alphabet}")
|
| 160 |
+
else:
|
| 161 |
+
st.error(f"Failed to load image for {alphabet}. The file might be corrupted.")
|
| 162 |
+
except Exception as e:
|
| 163 |
+
st.error(f"An error occurred while processing image for {alphabet}: {str(e)}")
|
| 164 |
else:
|
| 165 |
st.error(f"Image not found for {alphabet}")
|
| 166 |
|