File size: 8,973 Bytes
f8a748e
7f48662
d8e8827
2f84586
1876385
2f84586
 
7f48662
f8a748e
647b23c
97e4edd
647b23c
 
2f84586
 
647b23c
2f84586
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8a748e
690eecc
2f84586
b712951
2f84586
7f48662
a713a09
7f48662
 
 
2f84586
 
 
 
 
 
 
 
 
 
 
 
d8e8827
 
 
f8a748e
2f84586
 
 
 
7f48662
 
a713a09
b712951
200a130
 
b712951
 
 
 
 
 
 
 
 
 
 
 
200a130
 
 
b712951
 
2f84586
aac204e
 
 
b712951
 
 
 
200a130
4004f94
2f84586
 
 
 
 
 
730f5fd
65e7ed8
d8e8827
 
53aed50
65e7ed8
a713a09
 
2f84586
 
4004f94
7f48662
5ed5dc0
a713a09
7f48662
2f84586
4004f94
7f48662
2f84586
 
 
 
 
200a130
2f84586
 
 
 
 
 
 
200a130
2f84586
 
 
730f5fd
2f84586
 
 
200a130
2f84586
 
 
200a130
2f84586
 
 
 
44bc074
2f84586
 
 
2ff7a7b
2f84586
 
 
 
 
 
 
 
 
5ed5dc0
2f84586
 
a713a09
2f84586
 
 
7f48662
a713a09
7f48662
 
2f84586
 
 
200a130
 
 
 
 
 
2f84586
 
200a130
f8a748e
 
2f84586
a713a09
 
2f84586
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import gradio as gr
import os
import random
from PIL import Image
import spaces
import torch
from transformers import MllamaForConditionalGeneration, AutoProcessor
from OmniGen import OmniGenPipeline

from huggingface_hub import login
Llama32V_HFtoken = os.getenv("Llama32V")
login(Llama32V_HFtoken)

pipe = OmniGenPipeline.from_pretrained("Shitao/OmniGen-v1")
model_id = "meta-llama/Llama-3.2-11B-Vision-Instruct"
model = MllamaForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto")
processor = AutoProcessor.from_pretrained(model_id)

@spaces.GPU()
def predict_clothing(images):
    messages = [{"role": "user", "content":
                 [
                     {"type": "image"},
                     {"type": "text", "text": "Define this clothing in 1-3 words. Your response should be only the definition."}
                 ]}
               ]
    input_text = processor.apply_chat_template(messages, add_generation_prompt=True)

    output_texts = []
    for image in images:
        inputs = processor(image, input_text, add_special_tokens=False, return_tensors="pt").to(model.device)
        with torch.no_grad():
            output = model.generate(**inputs, max_new_tokens=30)
        output_texts.append(str(processor.decode(output[0])))

    return output_texts
    

@spaces.GPU(duration=180)
def generate_image(img1, img2, img3, height, width, img_guidance_scale, inference_steps, seed, separate_cfg_infer, offload_model,
                   use_input_image_size_as_output, max_input_image_size, randomize_seed, guidance_scale=3):
    
    input_images = [img1, img2, img3]
    # Delete None
    input_images = [img for img in input_images if img is not None]
    if len(input_images) == 0:
        input_images = None

    wears = predict_clothing(input_images[1:])
    if len(wears)==1:
        dress = wears[0]
        text = """A male wearing a {dress}. The male is in <img><|image_1|></img>. The {dress} is in <img><|image_2|></img>."""
    elif len(wears)==2:
        topwear, bottomwear = wears[0], wears[1]
        text = """A male wearing a {topwear} and a {bottomwear}. The male is in <img><|image_1|></img>.
                    The {topwear} is in <img><|image_2|></img>. The {bottomwear} is in <img><|image_3|></img>."""
    else:
        input_images = None
        
    
    if randomize_seed:
        seed = random.randint(0, 10000000)

    output = pipe(prompt=text, input_images=input_images, height=height, width=width, guidance_scale=guidance_scale,
                  img_guidance_scale=img_guidance_scale, num_inference_steps=inference_steps, separate_cfg_infer=separate_cfg_infer, 
                  use_kv_cache=True, offload_kv_cache=True, offload_model=offload_model, 
                  use_input_image_size_as_output=use_input_image_size_as_output, seed=seed, max_input_image_size=max_input_image_size,)
    img = output[0]
    return img

example_text = 
def get_example():
    case = [
            [   "./imgs/test_cases/icl1.jpg",
                "./imgs/test_cases/icl2.jpg",
                "./imgs/test_cases/icl3.jpg",
                224,
                224,
                1.6,
                1,
                768,
                False,
                False,
                2.5
            ],
    ]
    return case

def run_for_examples(img1, img2, img3, height, width, img_guidance_scale, seed, max_input_image_size, randomize_seed,
                     use_input_image_size_as_output, guidance_scale==3):    
    # Check the internal configuration of the function
    inference_steps = 50
    separate_cfg_infer = True
    offload_model = False

    text = "According to the following examples, generate an output for the input.\nInput: <img><|image_1|></img>\nOutput: <img><|image_2|></img>\n\nInput: <img><|image_3|></img>\nOutput:"
    return generate_image(text, img1, img2, img3, height, width, img_guidance_scale, inference_steps, seed,
                          separate_cfg_infer, offload_model, use_input_image_size_as_output, max_input_image_size, randomize_seed, guidance_scale)

description = """
This is a Virtual Try-On Platform.
Usage:
- First upload your own image as the first image, also tagged 'Person'
- Then upload you 'Top-wear' and 'Bottom-wear' images
- If its a single dress, and/or you don't have a Topwear and Bottomwear as separate images upload that single image under 'Topwear'

Tips:
- For image editing task and controlnet task, we recommend setting the height and width of output image as the same as input image. For example, if you want to edit a 512x512 image, you should set the height and width of output image as 512x512. You also can set the `use_input_image_size_as_output` to automatically set the height and width of output image as the same as input image.
- For out-of-memory or time cost, you can set `offload_model=True` or refer to [./docs/inference.md#requiremented-resources](https://github.com/VectorSpaceLab/OmniGen/blob/main/docs/inference.md#requiremented-resources) to select a appropriate setting.
- If inference time is too long when inputting multiple images, please try to reduce the `max_input_image_size`. For more details please refer to [./docs/inference.md#requiremented-resources](https://github.com/VectorSpaceLab/OmniGen/blob/main/docs/inference.md#requiremented-resources).

**HF Spaces often encounter errors due to quota limitations, so recommend to run it locally.**
"""

Credits = """**Credits** 
Made using [OmniGen](https://huggingface.co/Shitao/OmniGen-v1): Unified Image Generation [paper](https://arxiv.org/abs/2409.11340) [code](https://github.com/VectorSpaceLab/OmniGen)
"""


# Gradio 
with gr.Blocks() as demo:
    gr.Markdown("Virtual Try-On")
    gr.Markdown(description)
    with gr.Row():
        with gr.Row(equal_height=True):
            # input images
            image_input_1 = gr.Image(label="Person", type="filepath")
            image_input_2 = gr.Image(label="Top-wear", type="filepath")
            image_input_3 = gr.Image(label="Bottom-wear", type="filepath")

        # slider
        height_input = gr.Slider(
            label="Height", minimum=128, maximum=2048, value=1024, step=16
        )
        width_input = gr.Slider(
            label="Width", minimum=128, maximum=2048, value=1024, step=16
        )

        guidance_scale_input = gr.Slider(
            label="Guidance Scale", minimum=1.0, maximum=5.0, value=2.5, step=0.1
        )

        img_guidance_scale_input = gr.Slider(
            label="img_guidance_scale", minimum=1.0, maximum=2.0, value=1.6, step=0.1
        )

        num_inference_steps = gr.Slider(
            label="Inference Steps", minimum=1, maximum=100, value=50, step=1
        )

        seed_input = gr.Slider(
            label="Seed", minimum=0, maximum=2147483647, value=42, step=1
        )
        randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

        max_input_image_size = gr.Slider(
            label="max_input_image_size", minimum=128, maximum=2048, value=1024, step=16
        )

        separate_cfg_infer = gr.Checkbox(
            label="separate_cfg_infer", info="Whether to use separate inference process for different guidance. This will reduce the memory cost.", value=True,
        )
        offload_model = gr.Checkbox(
            label="offload_model", info="Offload model to CPU, which will significantly reduce the memory cost but slow down the generation speed. You can cancel separate_cfg_infer and set offload_model=True. If both separate_cfg_infer and offload_model are True, further reduce the memory, but slowest generation", value=False,
        )
        use_input_image_size_as_output = gr.Checkbox(
            label="use_input_image_size_as_output", info="Automatically adjust the output image size to be same as input image size. For editing and controlnet task, it can make sure the output image has the same size as input image leading to better performance", value=False,
        )

        # generate
        generate_button = gr.Button("Generate Image")
            
    with gr.Row():
        # output image
        output_image = gr.Image(label="Output Image")

    # click
    generate_button.click(
        generate_image,
        inputs=[image_input_1, image_input_2, image_input_3, height_input, width_input, img_guidance_scale_input, num_inference_steps,
                seed_input, separate_cfg_infer, offload_model, use_input_image_size_as_output, max_input_image_size, randomize_seed,
                guidance_scale_input,],
        outputs=output_image,
    )

    gr.Examples(
        examples=get_example(),
        fn=run_for_examples,
        inputs=[image_input_1, image_input_2, image_input_3, height_input, width_input, img_guidance_scale_input, seed_input,
                max_input_image_size, randomize_seed, use_input_image_size_as_output,guidance_scale_input],
        outputs=output_image,
    )

    gr.Markdown(Credits)

# launch
demo.launch()