Nikhillmahesh701 commited on
Commit
8d927fa
Β·
verified Β·
1 Parent(s): 8081e52

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +38 -17
README.md CHANGED
@@ -11,7 +11,6 @@ pinned: false
11
 
12
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
13
 
14
-
15
  # Smart Loan Recovery System
16
 
17
  A machine learning-powered system for predicting loan recovery probability with a Streamlit web interface.
@@ -20,6 +19,19 @@ A machine learning-powered system for predicting loan recovery probability with
20
 
21
  The Smart Loan Recovery System helps financial institutions predict the likelihood of recovering loans by analyzing various customer and loan attributes. The system uses machine learning algorithms to provide insights that can help prioritize collection efforts and optimize recovery strategies.
22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
  ## Features
24
 
25
  - **Predictive Analytics**: Uses machine learning to predict loan recovery probability
@@ -63,20 +75,29 @@ streamlit run app.py
63
 
64
  ```
65
  smart-loan-recovery-system/
66
- β”œβ”€β”€ app.py # Main Streamlit application
67
- β”œβ”€β”€ data/ # Data directory
68
- β”‚ └── loan_data.csv # Sample loan data
69
- β”œβ”€β”€ models/ # Trained models
70
- β”œβ”€β”€ src/ # Source code
71
- β”‚ β”œβ”€β”€ models/ # ML model implementations
72
- β”‚ β”‚ └── loan_recovery_model.py
73
- β”‚ β”œβ”€β”€ preprocessing/ # Data preprocessing
74
- β”‚ β”‚ └── data_processor.py
75
- β”‚ β”œβ”€β”€ utils/ # Utility functions
76
- β”‚ β”‚ └── data_generator.py
77
- β”‚ └── train_model.py # Script to train models
78
- β”œβ”€β”€ README.md # Project documentation
79
- └── requirements.txt # Project dependencies
 
 
 
 
 
 
 
 
 
80
  ```
81
 
82
  ## Machine Learning Model
@@ -91,11 +112,11 @@ The Streamlit web interface focuses solely on loan recovery prediction, providin
91
 
92
  ### Sample Interface
93
 
94
- ![Loan Input Form](screenshots/loan_input_form.png)
95
 
96
  ### Sample Results
97
 
98
- ![Prediction Results](screenshots/prediction_results.png)
99
 
100
  The interface allows users to:
101
  - Enter individual loan details with comprehensive input fields
 
11
 
12
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
13
 
 
14
  # Smart Loan Recovery System
15
 
16
  A machine learning-powered system for predicting loan recovery probability with a Streamlit web interface.
 
19
 
20
  The Smart Loan Recovery System helps financial institutions predict the likelihood of recovering loans by analyzing various customer and loan attributes. The system uses machine learning algorithms to provide insights that can help prioritize collection efforts and optimize recovery strategies.
21
 
22
+ ## System Workflow
23
+
24
+ ![System Workflow](screenshots/system_workflow.png)
25
+
26
+ The diagram above illustrates the complete workflow of the Smart Loan Recovery System:
27
+
28
+ 1. **Data Input**: Users can enter individual loan details or upload CSV files for batch processing
29
+ 2. **Data Processing**: The system preprocesses the data, performs feature engineering and normalization
30
+ 3. **Random Forest Model**: The prediction engine analyzes the data using the Random Forest algorithm
31
+ 4. **Results Visualization**: Interactive charts display recovery probability and risk assessment
32
+
33
+ The bottom section shows the key system components and their relationships, providing a clear overview of the system architecture.
34
+
35
  ## Features
36
 
37
  - **Predictive Analytics**: Uses machine learning to predict loan recovery probability
 
75
 
76
  ```
77
  smart-loan-recovery-system/
78
+ β”œβ”€β”€ app.py # Main Streamlit application
79
+ β”œβ”€β”€ data/ # Data directory
80
+ β”‚ └── loan_data.csv # Sample loan data
81
+ β”œβ”€β”€ models/ # Trained models
82
+ β”‚ β”œβ”€β”€ loan_recovery_random_forest.pkl # Trained Random Forest model
83
+ β”‚ └── loan_recovery_random_forest_processor.pkl # Model preprocessor
84
+ β”œβ”€β”€ screenshots/ # Screenshots and diagrams
85
+ β”‚ β”œβ”€β”€ system_workflow.svg # System workflow diagram (SVG)
86
+ β”‚ β”œβ”€β”€ system_workflow.png # System workflow diagram (PNG)
87
+ β”‚ β”œβ”€β”€ system_workflow.html # System workflow diagram (HTML)
88
+ β”‚ β”œβ”€β”€ loan_input_form.png # UI screenshot - input form
89
+ β”‚ └── prediction_results.png # UI screenshot - results
90
+ β”œβ”€β”€ src/ # Source code
91
+ β”‚ β”œβ”€β”€ models/ # ML model implementations
92
+ β”‚ β”‚ └── loan_recovery_model.py # Loan recovery model class
93
+ β”‚ β”œβ”€β”€ preprocessing/ # Data preprocessing
94
+ β”‚ β”‚ └── data_processor.py # Data processor class
95
+ β”‚ β”œβ”€β”€ utils/ # Utility functions
96
+ β”‚ β”‚ └── data_generator.py # Synthetic data generator
97
+ β”‚ └── train_model.py # Script to train models
98
+ β”œβ”€β”€ Smart_Loan_Recovery_System_Documentation.docx # Comprehensive project documentation
99
+ β”œβ”€β”€ README.md # Project overview
100
+ └── requirements.txt # Project dependencies
101
  ```
102
 
103
  ## Machine Learning Model
 
112
 
113
  ### Sample Interface
114
 
115
+ ![Loan Input Form](image.png)
116
 
117
  ### Sample Results
118
 
119
+ ![Prediction Results](image-1.png)
120
 
121
  The interface allows users to:
122
  - Enter individual loan details with comprehensive input fields