Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,388 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import matplotlib
|
5 |
+
matplotlib.use('Agg') # Use non-interactive backend
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import seaborn as sns
|
8 |
+
import os
|
9 |
+
import joblib
|
10 |
+
from src.models.loan_recovery_model import LoanRecoveryModel
|
11 |
+
from src.utils.data_generator import generate_loan_data
|
12 |
+
from src.preprocessing.data_processor import LoanDataProcessor
|
13 |
+
|
14 |
+
# Set page configuration
|
15 |
+
st.set_page_config(
|
16 |
+
page_title="Smart Loan Recovery System",
|
17 |
+
page_icon="💰",
|
18 |
+
layout="wide",
|
19 |
+
initial_sidebar_state="expanded"
|
20 |
+
)
|
21 |
+
|
22 |
+
# Define functions
|
23 |
+
@st.cache_data
|
24 |
+
def load_sample_data():
|
25 |
+
"""Load or generate sample data."""
|
26 |
+
data_path = "data/loan_data.csv"
|
27 |
+
if os.path.exists(data_path):
|
28 |
+
return pd.read_csv(data_path)
|
29 |
+
else:
|
30 |
+
data = generate_loan_data(n_samples=1000)
|
31 |
+
os.makedirs("data", exist_ok=True)
|
32 |
+
data.to_csv(data_path, index=False)
|
33 |
+
return data
|
34 |
+
|
35 |
+
@st.cache_resource
|
36 |
+
def load_model(model_type="random_forest"):
|
37 |
+
"""Load the trained model."""
|
38 |
+
model_path = f"models/loan_recovery_{model_type}.pkl"
|
39 |
+
|
40 |
+
# Check if model exists, if not train it
|
41 |
+
if not os.path.exists(model_path):
|
42 |
+
st.info(f"Model not found. Training a new {model_type} model...")
|
43 |
+
from src.train_model import train_and_save_model
|
44 |
+
train_and_save_model(model_type=model_type)
|
45 |
+
|
46 |
+
return LoanRecoveryModel.load_model(model_path)
|
47 |
+
|
48 |
+
def predict_recovery(model, data):
|
49 |
+
"""Make predictions using the model."""
|
50 |
+
recovery_probs = model.predict(data)
|
51 |
+
return recovery_probs
|
52 |
+
|
53 |
+
def plot_recovery_distribution(data):
|
54 |
+
"""Plot the distribution of recovery status."""
|
55 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
56 |
+
recovery_counts = data['recovery_status'].value_counts()
|
57 |
+
labels = ['Not Recovered', 'Recovered']
|
58 |
+
ax.bar(labels, recovery_counts.values)
|
59 |
+
ax.set_ylabel('Count')
|
60 |
+
ax.set_title('Distribution of Loan Recovery Status')
|
61 |
+
for i, v in enumerate(recovery_counts.values):
|
62 |
+
ax.text(i, v + 5, str(v), ha='center')
|
63 |
+
|
64 |
+
# Add percentage labels
|
65 |
+
total = len(data)
|
66 |
+
for i, v in enumerate(recovery_counts.values):
|
67 |
+
percentage = v / total * 100
|
68 |
+
ax.text(i, v/2, f"{percentage:.1f}%", ha='center', color='white', fontweight='bold')
|
69 |
+
|
70 |
+
return fig
|
71 |
+
|
72 |
+
def plot_feature_importance(model):
|
73 |
+
"""Plot feature importance."""
|
74 |
+
return model.plot_feature_importance(top_n=10)
|
75 |
+
|
76 |
+
def plot_recovery_by_feature(data, feature, is_categorical=False):
|
77 |
+
"""Plot recovery rate by a specific feature."""
|
78 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
79 |
+
|
80 |
+
if is_categorical:
|
81 |
+
# For categorical features
|
82 |
+
recovery_by_feature = data.groupby(feature)['recovery_status'].mean().sort_values()
|
83 |
+
counts = data.groupby(feature).size()
|
84 |
+
|
85 |
+
# Create a bar plot
|
86 |
+
bars = ax.bar(recovery_by_feature.index, recovery_by_feature.values * 100)
|
87 |
+
ax.set_ylabel('Recovery Rate (%)')
|
88 |
+
ax.set_title(f'Recovery Rate by {feature.replace("_", " ").title()}')
|
89 |
+
ax.set_ylim(0, 100)
|
90 |
+
|
91 |
+
# Add count labels
|
92 |
+
for i, (idx, count) in enumerate(counts.items()):
|
93 |
+
ax.text(i, 5, f"n={count}", ha='center', color='white', fontweight='bold')
|
94 |
+
|
95 |
+
# Rotate x-axis labels if needed
|
96 |
+
if len(recovery_by_feature) > 5:
|
97 |
+
plt.xticks(rotation=45, ha='right')
|
98 |
+
else:
|
99 |
+
# For numerical features, create bins
|
100 |
+
if feature in ['age', 'loan_term', 'previous_defaults', 'days_past_due']:
|
101 |
+
# These features have a small range, so we can use them directly
|
102 |
+
data['feature_bin'] = data[feature]
|
103 |
+
else:
|
104 |
+
# Create bins for continuous features
|
105 |
+
data['feature_bin'] = pd.qcut(data[feature], 5, duplicates='drop')
|
106 |
+
|
107 |
+
# Calculate recovery rate by bin
|
108 |
+
recovery_by_bin = data.groupby('feature_bin')['recovery_status'].mean().sort_index()
|
109 |
+
counts = data.groupby('feature_bin').size()
|
110 |
+
|
111 |
+
# Create a bar plot
|
112 |
+
bars = ax.bar(range(len(recovery_by_bin)), recovery_by_bin.values * 100)
|
113 |
+
ax.set_ylabel('Recovery Rate (%)')
|
114 |
+
ax.set_title(f'Recovery Rate by {feature.replace("_", " ").title()}')
|
115 |
+
ax.set_ylim(0, 100)
|
116 |
+
|
117 |
+
# Set x-axis labels
|
118 |
+
if feature in ['age', 'loan_term', 'previous_defaults', 'days_past_due']:
|
119 |
+
ax.set_xticks(range(len(recovery_by_bin)))
|
120 |
+
ax.set_xticklabels(recovery_by_bin.index)
|
121 |
+
else:
|
122 |
+
# Format bin labels
|
123 |
+
bin_labels = []
|
124 |
+
for bin_range in recovery_by_bin.index:
|
125 |
+
if hasattr(bin_range, 'left') and hasattr(bin_range, 'right'):
|
126 |
+
bin_labels.append(f"{bin_range.left:.1f}-{bin_range.right:.1f}")
|
127 |
+
else:
|
128 |
+
bin_labels.append(str(bin_range))
|
129 |
+
|
130 |
+
ax.set_xticks(range(len(recovery_by_bin)))
|
131 |
+
ax.set_xticklabels(bin_labels)
|
132 |
+
plt.xticks(rotation=45, ha='right')
|
133 |
+
|
134 |
+
# Add count labels
|
135 |
+
for i, count in enumerate(counts.values):
|
136 |
+
ax.text(i, 5, f"n={count}", ha='center', color='white', fontweight='bold')
|
137 |
+
|
138 |
+
# Add feature name to x-axis
|
139 |
+
ax.set_xlabel(feature.replace("_", " ").title())
|
140 |
+
|
141 |
+
plt.tight_layout()
|
142 |
+
return fig
|
143 |
+
|
144 |
+
# Main application
|
145 |
+
def main():
|
146 |
+
# Header
|
147 |
+
st.title("Smart Loan Recovery System")
|
148 |
+
st.image("https://img.icons8.com/color/96/000000/loan.png", width=100)
|
149 |
+
|
150 |
+
# Load data and model
|
151 |
+
data = load_sample_data()
|
152 |
+
|
153 |
+
# Load Random Forest model only
|
154 |
+
model = load_model("random_forest")
|
155 |
+
|
156 |
+
# Prediction page
|
157 |
+
st.title("Predict Loan Recovery")
|
158 |
+
|
159 |
+
st.write("""
|
160 |
+
Use this tool to predict the probability of recovering a loan based on customer and loan information.
|
161 |
+
You can either:
|
162 |
+
1. Enter information for a single loan
|
163 |
+
2. Upload a CSV file with multiple loans
|
164 |
+
""")
|
165 |
+
|
166 |
+
prediction_type = st.radio("Prediction Type", ["Single Loan", "Batch Prediction"])
|
167 |
+
|
168 |
+
if prediction_type == "Single Loan":
|
169 |
+
st.subheader("Enter Loan Information")
|
170 |
+
|
171 |
+
col1, col2, col3 = st.columns(3)
|
172 |
+
|
173 |
+
with col1:
|
174 |
+
age = st.number_input("Age", min_value=18, max_value=100, value=35)
|
175 |
+
gender = st.selectbox("Gender", ["Male", "Female"])
|
176 |
+
employment_status = st.selectbox(
|
177 |
+
"Employment Status",
|
178 |
+
["Employed", "Self-employed", "Unemployed", "Retired"]
|
179 |
+
)
|
180 |
+
annual_income = st.number_input("Annual Income ($)", min_value=0, value=60000)
|
181 |
+
|
182 |
+
with col2:
|
183 |
+
credit_score = st.slider("Credit Score", 300, 850, 650)
|
184 |
+
loan_amount = st.number_input("Loan Amount ($)", min_value=1000, value=20000)
|
185 |
+
interest_rate = st.slider("Interest Rate (%)", 1.0, 25.0, 8.0, 0.1)
|
186 |
+
loan_term = st.selectbox("Loan Term (months)", [12, 24, 36, 48, 60])
|
187 |
+
|
188 |
+
with col3:
|
189 |
+
payment_history = st.selectbox(
|
190 |
+
"Payment History",
|
191 |
+
["Excellent", "Good", "Fair", "Poor", "Very Poor"]
|
192 |
+
)
|
193 |
+
days_past_due = st.number_input("Days Past Due", min_value=0, value=0)
|
194 |
+
previous_defaults = st.number_input("Previous Defaults", min_value=0, max_value=10, value=0)
|
195 |
+
|
196 |
+
# Calculate derived features
|
197 |
+
monthly_payment = (loan_amount * (interest_rate/100/12) *
|
198 |
+
(1 + interest_rate/100/12)**(loan_term)) / \
|
199 |
+
((1 + interest_rate/100/12)**(loan_term) - 1)
|
200 |
+
|
201 |
+
debt_to_income = (monthly_payment * 12) / max(1, annual_income)
|
202 |
+
|
203 |
+
# Display calculated values
|
204 |
+
st.subheader("Calculated Values")
|
205 |
+
col1, col2 = st.columns(2)
|
206 |
+
with col1:
|
207 |
+
st.metric("Monthly Payment", f"${monthly_payment:.2f}")
|
208 |
+
with col2:
|
209 |
+
st.metric("Debt-to-Income Ratio", f"{debt_to_income*100:.2f}%")
|
210 |
+
|
211 |
+
# Create input dataframe
|
212 |
+
input_data = pd.DataFrame({
|
213 |
+
'age': [age],
|
214 |
+
'gender': [gender],
|
215 |
+
'employment_status': [employment_status],
|
216 |
+
'annual_income': [annual_income],
|
217 |
+
'credit_score': [credit_score],
|
218 |
+
'loan_amount': [loan_amount],
|
219 |
+
'interest_rate': [interest_rate],
|
220 |
+
'loan_term': [loan_term],
|
221 |
+
'payment_history': [payment_history],
|
222 |
+
'days_past_due': [days_past_due],
|
223 |
+
'previous_defaults': [previous_defaults],
|
224 |
+
'monthly_payment': [monthly_payment],
|
225 |
+
'debt_to_income': [debt_to_income]
|
226 |
+
})
|
227 |
+
|
228 |
+
# Make prediction
|
229 |
+
if st.button("Predict Recovery Probability"):
|
230 |
+
with st.spinner("Calculating recovery probability..."):
|
231 |
+
recovery_prob = predict_recovery(model, input_data)[0]
|
232 |
+
|
233 |
+
# Display result
|
234 |
+
st.subheader("Prediction Result")
|
235 |
+
|
236 |
+
# Create gauge chart for probability
|
237 |
+
fig, ax = plt.subplots(figsize=(10, 2))
|
238 |
+
ax.barh([0], [100], color='lightgray', height=0.5)
|
239 |
+
ax.barh([0], [recovery_prob * 100], color='green' if recovery_prob >= 0.5 else 'red', height=0.5)
|
240 |
+
ax.set_xlim(0, 100)
|
241 |
+
ax.set_yticks([])
|
242 |
+
ax.set_xticks([0, 25, 50, 75, 100])
|
243 |
+
ax.set_xticklabels(['0%', '25%', '50%', '75%', '100%'])
|
244 |
+
ax.axvline(50, color='gray', linestyle='--', alpha=0.5)
|
245 |
+
ax.text(recovery_prob * 100, 0, f"{recovery_prob*100:.1f}%",
|
246 |
+
ha='center', va='center', fontweight='bold', color='black')
|
247 |
+
|
248 |
+
st.pyplot(fig)
|
249 |
+
|
250 |
+
# Recommendation
|
251 |
+
st.subheader("Recovery Assessment")
|
252 |
+
if recovery_prob >= 0.8:
|
253 |
+
st.success("High probability of recovery. Standard collection procedures recommended.")
|
254 |
+
elif recovery_prob >= 0.5:
|
255 |
+
st.info("Moderate probability of recovery. Consider offering a payment plan.")
|
256 |
+
elif recovery_prob >= 0.3:
|
257 |
+
st.warning("Low probability of recovery. Consider debt restructuring or settlement offers.")
|
258 |
+
else:
|
259 |
+
st.error("Very low probability of recovery. Consider debt write-off or third-party collection.")
|
260 |
+
|
261 |
+
# Risk factors
|
262 |
+
st.subheader("Key Risk Factors")
|
263 |
+
risk_factors = []
|
264 |
+
|
265 |
+
if credit_score < 600:
|
266 |
+
risk_factors.append("Low credit score")
|
267 |
+
if days_past_due > 30:
|
268 |
+
risk_factors.append("Significant payment delay")
|
269 |
+
if previous_defaults > 0:
|
270 |
+
risk_factors.append("History of defaults")
|
271 |
+
if debt_to_income > 0.4:
|
272 |
+
risk_factors.append("High debt-to-income ratio")
|
273 |
+
if payment_history in ["Poor", "Very Poor"]:
|
274 |
+
risk_factors.append("Poor payment history")
|
275 |
+
|
276 |
+
if risk_factors:
|
277 |
+
for factor in risk_factors:
|
278 |
+
st.write(f"• {factor}")
|
279 |
+
else:
|
280 |
+
st.write("No significant risk factors identified.")
|
281 |
+
|
282 |
+
else: # Batch prediction
|
283 |
+
st.subheader("Upload CSV File")
|
284 |
+
st.write("""
|
285 |
+
Upload a CSV file with loan information. The file should contain the following columns:
|
286 |
+
age, gender, employment_status, annual_income, credit_score, loan_amount, interest_rate,
|
287 |
+
loan_term, payment_history, days_past_due, previous_defaults
|
288 |
+
""")
|
289 |
+
|
290 |
+
# Sample file download
|
291 |
+
sample_data = data.sample(5).drop(['customer_id', 'recovery_status'], axis=1, errors='ignore')
|
292 |
+
|
293 |
+
@st.cache_data
|
294 |
+
def convert_df_to_csv(df):
|
295 |
+
return df.to_csv(index=False).encode('utf-8')
|
296 |
+
|
297 |
+
csv = convert_df_to_csv(sample_data)
|
298 |
+
st.download_button(
|
299 |
+
"Download Sample CSV",
|
300 |
+
csv,
|
301 |
+
"sample_loans.csv",
|
302 |
+
"text/csv",
|
303 |
+
key='download-csv'
|
304 |
+
)
|
305 |
+
|
306 |
+
# File upload
|
307 |
+
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
|
308 |
+
|
309 |
+
if uploaded_file is not None:
|
310 |
+
# Load and display the data
|
311 |
+
batch_data = pd.read_csv(uploaded_file)
|
312 |
+
st.write("Preview of uploaded data:")
|
313 |
+
st.dataframe(batch_data.head())
|
314 |
+
|
315 |
+
# Check for required columns
|
316 |
+
required_cols = ['age', 'gender', 'employment_status', 'annual_income',
|
317 |
+
'credit_score', 'loan_amount', 'interest_rate',
|
318 |
+
'loan_term', 'payment_history', 'days_past_due',
|
319 |
+
'previous_defaults']
|
320 |
+
|
321 |
+
missing_cols = [col for col in required_cols if col not in batch_data.columns]
|
322 |
+
|
323 |
+
if missing_cols:
|
324 |
+
st.error(f"Missing required columns: {', '.join(missing_cols)}")
|
325 |
+
else:
|
326 |
+
# Calculate derived features if not present
|
327 |
+
if 'monthly_payment' not in batch_data.columns:
|
328 |
+
batch_data['monthly_payment'] = (
|
329 |
+
batch_data['loan_amount'] * (batch_data['interest_rate']/100/12) *
|
330 |
+
(1 + batch_data['interest_rate']/100/12)**(batch_data['loan_term'])
|
331 |
+
) / (
|
332 |
+
(1 + batch_data['interest_rate']/100/12)**(batch_data['loan_term']) - 1
|
333 |
+
)
|
334 |
+
|
335 |
+
if 'debt_to_income' not in batch_data.columns:
|
336 |
+
batch_data['debt_to_income'] = (batch_data['monthly_payment'] * 12) / batch_data['annual_income'].replace(0, 1)
|
337 |
+
|
338 |
+
# Make predictions
|
339 |
+
if st.button("Run Batch Prediction"):
|
340 |
+
with st.spinner("Processing batch predictions..."):
|
341 |
+
# Make predictions
|
342 |
+
recovery_probs = predict_recovery(model, batch_data)
|
343 |
+
|
344 |
+
# Add predictions to the dataframe
|
345 |
+
batch_data['recovery_probability'] = recovery_probs
|
346 |
+
batch_data['recovery_prediction'] = (recovery_probs >= 0.5).astype(int)
|
347 |
+
|
348 |
+
# Display results
|
349 |
+
st.subheader("Prediction Results")
|
350 |
+
st.dataframe(batch_data)
|
351 |
+
|
352 |
+
# Summary statistics
|
353 |
+
st.subheader("Summary")
|
354 |
+
avg_prob = batch_data['recovery_probability'].mean() * 100
|
355 |
+
predicted_recoveries = batch_data['recovery_prediction'].sum()
|
356 |
+
recovery_rate = predicted_recoveries / len(batch_data) * 100
|
357 |
+
|
358 |
+
col1, col2 = st.columns(2)
|
359 |
+
with col1:
|
360 |
+
st.metric("Average Recovery Probability", f"{avg_prob:.2f}%")
|
361 |
+
with col2:
|
362 |
+
st.metric("Predicted Recovery Rate", f"{recovery_rate:.2f}% ({predicted_recoveries}/{len(batch_data)})")
|
363 |
+
|
364 |
+
# Distribution of probabilities
|
365 |
+
st.subheader("Distribution of Recovery Probabilities")
|
366 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
367 |
+
sns.histplot(batch_data['recovery_probability'], bins=20, kde=True, ax=ax)
|
368 |
+
ax.set_xlabel("Recovery Probability")
|
369 |
+
ax.set_ylabel("Count")
|
370 |
+
ax.axvline(0.5, color='red', linestyle='--')
|
371 |
+
ax.text(0.5, ax.get_ylim()[1]*0.9, "Decision Threshold",
|
372 |
+
rotation=90, va='top', ha='right', color='red')
|
373 |
+
st.pyplot(fig)
|
374 |
+
|
375 |
+
# Download results
|
376 |
+
csv = convert_df_to_csv(batch_data)
|
377 |
+
st.download_button(
|
378 |
+
"Download Results CSV",
|
379 |
+
csv,
|
380 |
+
"loan_recovery_predictions.csv",
|
381 |
+
"text/csv",
|
382 |
+
key='download-results'
|
383 |
+
)
|
384 |
+
|
385 |
+
|
386 |
+
|
387 |
+
if __name__ == "__main__":
|
388 |
+
main()
|