File size: 1,217 Bytes
57ec298
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import gradio as gr
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification

model_name = "NimaKL/FireWatch_tiny_75k"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)

def predict(text):
    inputs = tokenizer(text, return_tensors="pt")
    outputs = model(**inputs)
    logits = outputs.logits
    label_id = logits.argmax(axis=1).item()
    return "Danger of fire hazard!" if label_id == 1 else "It is unlikely that a fire will start in this area."

io = gr.Interface(
    fn=predict,
    inputs="text",
    outputs="text",
    title="FireWatch",
    description="Predict whether a data row describes a fire hazard or not.",
    output_description="Prediction",
    examples=[['-26.76123, 147.15512, 393.02, 203.63'], ['-26.7598, 147.14514, 361.54, 79.4'], ['-25.70059, 149.48932, 313.9, 5.15'], ['-24.4318, 151.83102, 307.98, 8.79'], ['-23.21878, 148.91298, 314.08, 7.4'], ['7.87518, 19.9241, 316.32, 39.63'], ['-20.10942, 148.14326, 314.39, 8.8'], ['7.87772, 19.9048, 304.14, 13.43'], ['-20.79866, 124.46834, 366.74, 89.06']]
,
    output_component_names=["Prediction"],
    theme="Streamlit"
)

io.launch()