Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
from transformers import AutoTokenizer
|
5 |
+
from transformers import BertForSequenceClassification
|
6 |
+
|
7 |
+
|
8 |
+
st.set_page_config(layout='wide', initial_sidebar_state='expanded')
|
9 |
+
col1, col2= st.columns(2)
|
10 |
+
|
11 |
+
with col1:
|
12 |
+
st.title("FireWatch")
|
13 |
+
st.markdown("PREDICT WHETHER HEAT SIGNATURES AROUND THE GLOBE ARE LIKELY TO BE FIRES!")
|
14 |
+
st.markdown("Traing Code at:")
|
15 |
+
st.markdown("https://colab.research.google.com/drive/1-IfOMJ-X8MKzwm3UjbJbK6RmhT7tk_ye?usp=sharing")
|
16 |
+
st.markdown("Try the Model Yourself at:")
|
17 |
+
st.markdown("https://colab.research.google.com/drive/1GmweeQrkzs0OXQ_KNZsWd1PQVRLCWDKi?usp=sharing")
|
18 |
+
|
19 |
+
|
20 |
+
table_html = """
|
21 |
+
<table style="border-collapse: collapse; width: 100%;">
|
22 |
+
<tr style="border: 1px solid orange;">
|
23 |
+
<th style="border: 1px solid orange; font-weight: bold;">Category</th>
|
24 |
+
<th style="border: 1px solid orange; font-weight: bold;">Latitude, Longitude, Brightness, FRP</th>
|
25 |
+
</tr>
|
26 |
+
<tr style="border: 1px solid orange;">
|
27 |
+
<td style="border: 1px solid orange;">Likely</td>
|
28 |
+
<td style="border: 1px solid orange;">-26.76123, 147.15512, 393.02, 203.63</td>
|
29 |
+
</tr>
|
30 |
+
<tr style="border: 1px solid orange;">
|
31 |
+
<td style="border: 1px solid orange;">Likely</td>
|
32 |
+
<td style="border: 1px solid orange;">-26.7598, 147.14514, 361.54, 79.4</td>
|
33 |
+
</tr>
|
34 |
+
<tr style="border: 1px solid orange;">
|
35 |
+
<td style="border: 1px solid orange;">Unlikely</td>
|
36 |
+
<td style="border: 1px solid orange;">-25.70059, 149.48932, 313.9, 5.15</td>
|
37 |
+
</tr>
|
38 |
+
<tr style="border: 1px solid orange;">
|
39 |
+
<td style="border: 1px solid orange;">Unlikely</td>
|
40 |
+
<td style="border: 1px solid orange;">-24.4318, 151.83102, 307.98, 8.79</td>
|
41 |
+
</tr>
|
42 |
+
<tr style="border: 1px solid orange;">
|
43 |
+
<td style="border: 1px solid orange;">Unlikely</td>
|
44 |
+
<td style="border: 1px solid orange;">-23.21878, 148.91298, 314.08, 7.4</td>
|
45 |
+
</tr>
|
46 |
+
<tr style="border: 1px solid orange;">
|
47 |
+
<td style="border: 1px solid orange;">Likely</td>
|
48 |
+
<td style="border: 1px solid orange;">7.87518, 19.9241, 316.32, 39.63</td>
|
49 |
+
</tr>
|
50 |
+
<tr style="border: 1px solid orange;">
|
51 |
+
<td style="border: 1px solid orange;">Unlikely</td>
|
52 |
+
<td style="border: 1px solid orange;">-20.10942, 148.14326, 314.39, 8.8</td>
|
53 |
+
</tr>
|
54 |
+
<tr style="border: 1px solid orange;">
|
55 |
+
<td style="border: 1px solid orange;">Unlikely</td>
|
56 |
+
<td style="border: 1px solid orange;">7.87772, 19.9048, 304.14, 13.43</td>
|
57 |
+
</tr>
|
58 |
+
<tr style="border: 1px solid orange;">
|
59 |
+
<td style="border: 1px solid orange;">Likely</td>
|
60 |
+
<td style="border: 1px solid yellow;">7.8879, 19.92571, 328.6, 77.78</td>
|
61 |
+
</tr>
|
62 |
+
</table>
|
63 |
+
"""
|
64 |
+
|
65 |
+
st.markdown(table_html, unsafe_allow_html=True)
|
66 |
+
|
67 |
+
|
68 |
+
@st.cache(suppress_st_warning=True, allow_output_mutation=True)
|
69 |
+
def load_model(show_spinner=True):
|
70 |
+
MODEL_PATH = "NimaKL/FireWatch_5k"
|
71 |
+
model = BertForSequenceClassification.from_pretrained(MODEL_PATH)
|
72 |
+
return model
|
73 |
+
|
74 |
+
|
75 |
+
|
76 |
+
token_id = []
|
77 |
+
attention_masks = []
|
78 |
+
def preprocessing(input_text, tokenizer):
|
79 |
+
'''
|
80 |
+
Returns <class transformers.tokenization_utils_base.BatchEncoding> with the following fields:
|
81 |
+
- input_ids: list of token ids
|
82 |
+
- token_type_ids: list of token type ids
|
83 |
+
- attention_mask: list of indices (0,1) specifying which tokens should considered by the model (return_attention_mask = True).
|
84 |
+
'''
|
85 |
+
return tokenizer.encode_plus(
|
86 |
+
input_text,
|
87 |
+
add_special_tokens = True,
|
88 |
+
max_length = 16,
|
89 |
+
pad_to_max_length = True,
|
90 |
+
return_attention_mask = True,
|
91 |
+
return_tensors = 'pt'
|
92 |
+
)
|
93 |
+
|
94 |
+
def predict(new_sentence):
|
95 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
96 |
+
# We need Token IDs and Attention Mask for inference on the new sentence
|
97 |
+
test_ids = []
|
98 |
+
test_attention_mask = []
|
99 |
+
# Apply the tokenizer
|
100 |
+
encoding = preprocessing(new_sentence, tokenizer)
|
101 |
+
# Extract IDs and Attention Mask
|
102 |
+
test_ids.append(encoding['input_ids'])
|
103 |
+
test_attention_mask.append(encoding['attention_mask'])
|
104 |
+
test_ids = torch.cat(test_ids, dim = 0)
|
105 |
+
test_attention_mask = torch.cat(test_attention_mask, dim = 0)
|
106 |
+
# Forward pass, calculate logit predictions
|
107 |
+
with torch.no_grad():
|
108 |
+
output = model(test_ids.to(device), token_type_ids = None, attention_mask = test_attention_mask.to(device))
|
109 |
+
prediction = 'Likely' if np.argmax(output.logits.cpu().numpy()).flatten().item() == 1 else 'Unlikely'
|
110 |
+
pred = 'Predicted Class: '+ prediction
|
111 |
+
return pred
|
112 |
+
|
113 |
+
model = load_model()
|
114 |
+
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
115 |
+
with col2:
|
116 |
+
text = st.text_input('Enter Prediction Data in Correct Format "Latitude, Longtitude, Brightness, FRP".\nExample: 8.81064, -65.07661, 328.04, 18.76 \nPredition Data: ')
|
117 |
+
aButton = st.button('Predict')
|
118 |
+
|
119 |
+
if text or aButton:
|
120 |
+
with st.spinner('Wait for it...'):
|
121 |
+
st.success(predict(text))
|
122 |
+
|