LetsTalk / app.py
NimaKL's picture
Update app.py
f58e822 verified
import gradio as gr
from neo4j import GraphDatabase
import logging
from typing import List, Dict, Tuple
import pandas as pd
from datetime import datetime
import os
# Set up logging with more detailed format for debugging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S'
)
logger = logging.getLogger(__name__)
# Get database credentials from environment variables
NEO4J_URL = os.getenv("NEO4J_URL")
NEO4J_USER = os.getenv("NEO4J_USER")
NEO4J_PASSWORD = os.getenv("NEO4J_PASSWORD")
def format_neo4j_datetime(dt) -> str:
"""Convert Neo4j datetime to string format."""
if dt is None:
logger.info("Received None datetime")
return 'Unknown date'
try:
logger.info(f"Formatting datetime: {dt} of type {type(dt)}")
if hasattr(dt, 'to_native'):
dt = dt.to_native()
logger.info(f"Converted to native: {dt} of type {type(dt)}")
return dt.strftime('%Y-%m-%d')
except Exception as e:
logger.warning(f"Error formatting datetime: {e}")
return 'Unknown date'
def is_displayable_keyword(keyword: str) -> bool:
"""
Check if a keyword should be displayed (not just numbers and separators).
Filters out:
- Pure numbers (1234)
- Numbers with dots (15.10)
- Numbers with dashes (2023-01)
- Numbers with spaces (15 10)
- Numbers with slashes (15/10)
- Any combination of above
"""
if not keyword:
return False
# Remove all common number separators and spaces
cleaned = keyword.replace('.', '') \
.replace('-', '') \
.replace('/', '') \
.replace('\\', '') \
.replace(' ', '') \
.replace(':', '') \
.replace(',', '')
# Check if what remains is just digits
return not cleaned.isdigit()
def format_interest_list_for_display(interests: set, max_items: int = 10) -> str:
"""Format a list of interests for display, hiding numeric-only keywords."""
if not interests:
return 'None'
# Filter numeric keywords only for display
displayable_interests = {interest for interest in interests if is_displayable_keyword(interest)}
if not displayable_interests:
return 'None'
sorted_interests = sorted(displayable_interests)
if len(sorted_interests) <= max_items:
return ', '.join(sorted_interests)
return f"{', '.join(sorted_interests[:max_items])} (+{len(sorted_interests) - max_items} more)"
class QuestionRecommender:
def __init__(self):
try:
self.driver = GraphDatabase.driver(
NEO4J_URL,
auth=(NEO4J_USER, NEO4J_PASSWORD)
)
logger.info("Initializing QuestionRecommender with debug database")
# Test connection immediately
self.driver.verify_connectivity()
logger.info("Successfully connected to Neo4j database")
self.verify_connection()
# Inspect question types on initialization
self.inspect_question_types()
except Exception as e:
logger.error(f"Failed to initialize database connection: {str(e)}")
raise
def verify_connection(self):
"""Verify database connection and log basic statistics."""
try:
with self.driver.session() as session:
# First try a simple query to verify connection
test_result = session.run("MATCH (n) RETURN count(n) as count").single()
if not test_result:
raise Exception("Could not execute test query")
logger.info(f"Database contains {test_result['count']} total nodes")
# Get database statistics with relationship counts
stats = session.run("""
// Count nodes
MATCH (u:User)
WITH COUNT(u) as user_count
MATCH (k:Keyword)
WITH user_count, COUNT(k) as keyword_count
MATCH (q:Question)
WITH user_count, keyword_count, COUNT(q) as question_count
MATCH (t:Topic)
WITH user_count, keyword_count, question_count, COUNT(t) as topic_count
// Count relationships
OPTIONAL MATCH ()-[r:INTERESTED_IN_KEYWORD]->()
WITH user_count, keyword_count, question_count, topic_count, COUNT(r) as keyword_rel_count
OPTIONAL MATCH ()-[r:INTERESTED_IN_TOPIC]->()
WITH user_count, keyword_count, question_count, topic_count, keyword_rel_count, COUNT(r) as topic_rel_count
OPTIONAL MATCH ()-[r:HAS_KEYWORD]->()
WITH user_count, keyword_count, question_count, topic_count, keyword_rel_count, topic_rel_count, COUNT(r) as question_keyword_count
OPTIONAL MATCH ()-[r:HAS_TOPIC]->()
RETURN
user_count, keyword_count, question_count, topic_count,
keyword_rel_count, topic_rel_count,
question_keyword_count, COUNT(r) as question_topic_count
""").single()
if not stats:
raise Exception("Could not retrieve database statistics")
logger.info("=== Database Statistics ===")
logger.info(f"Nodes:")
logger.info(f" Users: {stats['user_count']}")
logger.info(f" Keywords: {stats['keyword_count']}")
logger.info(f" Questions: {stats['question_count']}")
logger.info(f" Topics: {stats['topic_count']}")
logger.info(f"\nRelationships:")
logger.info(f" User->Keyword (INTERESTED_IN_KEYWORD): {stats['keyword_rel_count']}")
logger.info(f" User->Topic (INTERESTED_IN_TOPIC): {stats['topic_rel_count']}")
logger.info(f" Question->Keyword (HAS_KEYWORD): {stats['question_keyword_count']}")
logger.info(f" Question->Topic (HAS_TOPIC): {stats['question_topic_count']}")
except Exception as e:
logger.error(f"Database verification failed: {str(e)}")
logger.error(f"URL: {NEO4J_URL}")
logger.error(f"User: {NEO4J_USER}")
raise Exception(f"Failed to verify database connection: {str(e)}")
def inspect_question_types(self):
"""Inspect different types of questions and their attributes in the database."""
with self.driver.session() as session:
try:
# Get all distinct question types and their properties
result = session.run("""
MATCH (q:Question)
WITH DISTINCT keys(q) as props, labels(q) as types
RETURN types, props, count(*) as count
ORDER BY count DESC
""")
logger.info("\n=== Question Types and Properties ===")
for record in result:
types = record["types"]
props = record["props"]
count = record["count"]
logger.info(f"\nType: {types}")
logger.info(f"Count: {count}")
logger.info("Properties:")
for prop in props:
# Get a sample value for this property
sample = session.run("""
MATCH (q:Question)
WHERE $prop in keys(q)
RETURN q[$prop] as value
LIMIT 1
""", prop=prop).single()
value = sample["value"] if sample else None
value_type = type(value).__name__ if value is not None else "None"
logger.info(f" - {prop}: {value_type} (example: {str(value)[:100]}{'...' if str(value)[100:] else ''})")
# Get relationships specific to different question types
result = session.run("""
MATCH (q:Question)-[r]->(target)
WITH DISTINCT type(r) as rel_type, labels(target) as target_labels, count(*) as count
RETURN rel_type, target_labels, count
ORDER BY count DESC
""")
logger.info("\n=== Question Relationships ===")
for record in result:
rel_type = record["rel_type"]
target_labels = record["target_labels"]
count = record["count"]
logger.info(f"Relationship: {rel_type} -> {target_labels} (Count: {count})")
except Exception as e:
logger.error(f"Error inspecting question types: {str(e)}")
raise
def close(self):
self.driver.close()
def get_all_users(self) -> List[str]:
"""Get list of all users with interest counts."""
with self.driver.session() as session:
try:
# Get users with their interest counts using proper relationship patterns
result = session.run("""
MATCH (u:User)
OPTIONAL MATCH (u)-[r:INTERESTED_IN_KEYWORD|INTERESTED_IN_TOPIC]->(interest)
WITH u,
COUNT(DISTINCT CASE WHEN type(r) = 'INTERESTED_IN_KEYWORD' THEN interest END) as keyword_count,
COUNT(DISTINCT CASE WHEN type(r) = 'INTERESTED_IN_TOPIC' THEN interest END) as topic_count
WHERE keyword_count > 0 OR topic_count > 0
RETURN
u.name as username,
keyword_count,
topic_count,
keyword_count + topic_count as total_interests
ORDER BY total_interests DESC, username
""")
users_with_counts = [(
record["username"],
record["keyword_count"],
record["topic_count"]
) for record in result if record["username"]]
if not users_with_counts:
logger.warning("No users found with interests")
return []
logger.info(f"Retrieved {len(users_with_counts)} users with interests")
logger.info("Top 5 users by interest count:")
for username, kw_count, topic_count in users_with_counts[:5]:
logger.info(f" - {username}: {kw_count} keywords, {topic_count} topics")
# Format usernames with their counts
return [
f"{username} ({kw_count} keywords, {topic_count} topics)"
for username, kw_count, topic_count in users_with_counts
]
except Exception as e:
logger.error(f"Error fetching users: {str(e)}")
return []
def get_user_interests(self, username: str) -> Dict[str, set]:
"""Get keywords and topics a user is interested in."""
with self.driver.session() as session:
# Get keywords the user is interested in
keyword_result = session.run("""
MATCH (u:User {name: $username})-[:INTERESTED_IN_KEYWORD]->(k:Keyword)
RETURN DISTINCT k.keyword as keyword
""", username=username)
keywords = {str(record["keyword"]) for record in keyword_result if record["keyword"]}
# Log keyword count for debugging
logger.debug(f"Found {len(keywords)} keywords for user {username}")
# Get topics the user is interested in
topic_result = session.run("""
MATCH (u:User {name: $username})-[:INTERESTED_IN_TOPIC]->(t:Topic)
RETURN DISTINCT t.topic as topic
""", username=username)
topics = {str(record["topic"]) for record in topic_result if record["topic"]}
# Log topic count for debugging
logger.debug(f"Found {len(topics)} topics for user {username}")
return {"keywords": keywords or set(), "topics": topics or set()}
def find_common_questions(self, user1: str, user2: str, max_questions: int = 5) -> List[Dict]:
"""Find questions to recommend based on common interests using advanced Neo4j features."""
with self.driver.session() as session:
# Debug: Check if users exist and have interests
user_check = session.run("""
MATCH (u1:User {name: $user1})
MATCH (u2:User {name: $user2})
OPTIONAL MATCH (u1)-[r1:INTERESTED_IN_KEYWORD|INTERESTED_IN_TOPIC]->(interest1)
OPTIONAL MATCH (u2)-[r2:INTERESTED_IN_KEYWORD|INTERESTED_IN_TOPIC]->(interest2)
RETURN
COUNT(DISTINCT u1) as user1_exists,
COUNT(DISTINCT u2) as user2_exists,
COUNT(DISTINCT interest1) as user1_interests,
COUNT(DISTINCT interest2) as user2_interests
""", user1=user1, user2=user2).single()
if not (user_check and user_check['user1_exists'] and user_check['user2_exists']):
logger.error(f"One or both users not found: {user1}, {user2}")
return []
logger.info(f"User {user1} has {user_check['user1_interests']} total interests")
logger.info(f"User {user2} has {user_check['user2_interests']} total interests")
# Advanced question recommendation query using Neo4j path finding and scoring
questions_query = """
// Find all interests (both keywords and topics) for both users
MATCH (u1:User {name: $user1})
MATCH (u2:User {name: $user2})
// Get all interests for both users
OPTIONAL MATCH (u1)-[r1:INTERESTED_IN_KEYWORD|INTERESTED_IN_TOPIC]->(interest1)
OPTIONAL MATCH (u2)-[r2:INTERESTED_IN_KEYWORD|INTERESTED_IN_TOPIC]->(interest2)
WITH u1, u2,
COLLECT(DISTINCT interest1) as u1_interests,
COLLECT(DISTINCT interest2) as u2_interests
// Find questions related to either user's interests for each source
CALL {
WITH u1, u2, u1_interests, u2_interests
UNWIND u1_interests + u2_interests as interest
MATCH (q:Question)-[r:HAS_KEYWORD|HAS_TOPIC]->(interest)
WHERE
q.author <> $user1 AND
q.author <> $user2 AND
q.source = 'stack_exchange' AND
(
(interest IN u1_interests AND interest IN u2_interests) OR
(interest IN u1_interests AND EXISTS((q)-[:HAS_KEYWORD|HAS_TOPIC]->()<-[:INTERESTED_IN_KEYWORD|INTERESTED_IN_TOPIC]-(u2))) OR
(interest IN u2_interests AND EXISTS((q)-[:HAS_KEYWORD|HAS_TOPIC]->()<-[:INTERESTED_IN_KEYWORD|INTERESTED_IN_TOPIC]-(u1)))
)
WITH q, interest, type(r) as rel_type,
CASE WHEN interest IN u1_interests AND interest IN u2_interests THEN 2.0 ELSE 1.0 END as interest_weight
WITH q, collect({interest: interest, weight: interest_weight, type: rel_type}) as interests,
sum(interest_weight) as base_score
RETURN q, interests, base_score
ORDER BY base_score * rand() DESC
LIMIT 15 // Increased from 10 to get more variety
UNION
WITH u1, u2, u1_interests, u2_interests
UNWIND u1_interests + u2_interests as interest
MATCH (q:Question)-[r:HAS_KEYWORD|HAS_TOPIC]->(interest)
WHERE
q.source = 'trivia' AND
(
(interest IN u1_interests AND interest IN u2_interests) OR
(interest IN u1_interests AND EXISTS((q)-[:HAS_KEYWORD|HAS_TOPIC]->()<-[:INTERESTED_IN_KEYWORD|INTERESTED_IN_TOPIC]-(u2))) OR
(interest IN u2_interests AND EXISTS((q)-[:HAS_KEYWORD|HAS_TOPIC]->()<-[:INTERESTED_IN_KEYWORD|INTERESTED_IN_TOPIC]-(u1)))
)
WITH q, interest, type(r) as rel_type,
CASE WHEN interest IN u1_interests AND interest IN u2_interests THEN 2.0 ELSE 1.0 END as interest_weight
WITH q, collect({interest: interest, weight: interest_weight, type: rel_type}) as interests,
sum(interest_weight) as base_score
RETURN q, interests, base_score
ORDER BY base_score * rand() DESC
LIMIT 15 // Increased from 10 to get more variety
UNION
WITH u1, u2, u1_interests, u2_interests
UNWIND u1_interests + u2_interests as interest
MATCH (q:Question)-[r:HAS_KEYWORD|HAS_TOPIC]->(interest)
WHERE
q.source = 'wikipedia' AND
(
(interest IN u1_interests AND interest IN u2_interests) OR
(interest IN u1_interests AND EXISTS((q)-[:HAS_KEYWORD|HAS_TOPIC]->()<-[:INTERESTED_IN_KEYWORD|INTERESTED_IN_TOPIC]-(u2))) OR
(interest IN u2_interests AND EXISTS((q)-[:HAS_KEYWORD|HAS_TOPIC]->()<-[:INTERESTED_IN_KEYWORD|INTERESTED_IN_TOPIC]-(u1)))
)
WITH q, interest, type(r) as rel_type,
CASE WHEN interest IN u1_interests AND interest IN u2_interests THEN 2.0 ELSE 1.0 END as interest_weight
WITH q, collect({interest: interest, weight: interest_weight, type: rel_type}) as interests,
sum(interest_weight) as base_score
RETURN q, interests, base_score
ORDER BY base_score * rand() DESC
LIMIT 15 // Increased from 10 to get more variety
UNION
WITH u1, u2, u1_interests, u2_interests
UNWIND u1_interests + u2_interests as interest
MATCH (q:Question)-[r:HAS_KEYWORD|HAS_TOPIC]->(interest)
WHERE
q.source = 'reddit' AND
(
(interest IN u1_interests AND interest IN u2_interests) OR
(interest IN u1_interests AND EXISTS((q)-[:HAS_KEYWORD|HAS_TOPIC]->()<-[:INTERESTED_IN_KEYWORD|INTERESTED_IN_TOPIC]-(u2))) OR
(interest IN u2_interests AND EXISTS((q)-[:HAS_KEYWORD|HAS_TOPIC]->()<-[:INTERESTED_IN_KEYWORD|INTERESTED_IN_TOPIC]-(u1)))
)
WITH q, interest, type(r) as rel_type,
CASE WHEN interest IN u1_interests AND interest IN u2_interests THEN 2.0 ELSE 1.0 END as interest_weight
WITH q, collect({interest: interest, weight: interest_weight, type: rel_type}) as interests,
sum(interest_weight) as base_score
RETURN q, interests, base_score
ORDER BY base_score * rand() DESC
LIMIT 15 // Increased from 10 to get more variety
}
// Calculate temporal relevance for the combined results
WITH q, interests, base_score,
CASE
WHEN q.created_utc_ts IS NOT NULL
THEN base_score * (1.0 + 0.1 * (1.0 - duration.between(q.created_utc_ts, datetime()).days / 365.0))
ELSE base_score
END as temporal_score,
// Add source-specific random boost to ensure better mixing
CASE q.source
WHEN 'stack_exchange' THEN rand() * 0.4
WHEN 'trivia' THEN rand() * 0.4
WHEN 'wikipedia' THEN rand() * 0.4
WHEN 'reddit' THEN rand() * 0.4
ELSE rand() * 0.4
END as source_random_boost
// Return results with all metadata
WITH q, interests, temporal_score, source_random_boost,
temporal_score * (0.6 + 0.8 * rand()) + source_random_boost as final_score
RETURN DISTINCT
q.title as title,
q.body as body,
q.created_utc_ts as created_utc_ts,
q.author as author,
q.source as source,
q.correct_answer as correct_answer,
q.incorrect_answers as incorrect_answers,
q.upvotes as upvotes,
q.num_comments as num_comments,
q.subreddit as subreddit,
[i in interests | CASE
WHEN i.type = 'HAS_KEYWORD' THEN i.interest.keyword
ELSE i.interest.topic
END] as matching_interests,
[i in interests | CASE
WHEN i.type = 'HAS_KEYWORD' THEN 'keyword'
ELSE 'topic'
END] as interest_types,
final_score as relevance_score
ORDER BY final_score DESC
LIMIT $max_questions
"""
questions = [dict(record) for record in session.run(questions_query,
user1=user1,
user2=user2,
max_questions=max_questions)]
if questions:
first_q = questions[0]
logger.info(f"Sample question:")
logger.info(f"Title: {first_q.get('title', 'No title')}")
logger.info(f"Author: {first_q.get('author', 'No author')}")
logger.info(f"Score: {first_q.get('relevance_score', 0)}")
logger.info(f"Interests: {first_q.get('matching_interests', [])}")
logger.info(f"Found {len(questions)} questions with common interests")
return questions
def process_body(text, title):
"""Process question body to handle images and HTML."""
if not text:
logger.warning(f"Empty body for question: {title}")
return ""
try:
from bs4 import BeautifulSoup
# Parse the HTML content
soup = BeautifulSoup(str(text), 'html.parser')
# Function to fix Stack Exchange URLs
def fix_stack_exchange_url(url):
if not url:
return url
if url.startswith(('http://', 'https://')):
return url
if url.startswith('//'):
return 'https:' + url
if url.startswith('/'):
return 'https://i.stack.imgur.com' + url
return 'https://i.stack.imgur.com/' + url
# Find all img tags and replace with preview cards
for img in soup.find_all('img'):
src = img.get('src', '')
if not src:
continue
fixed_src = fix_stack_exchange_url(src)
alt_text = img.get('alt', '').strip()
if not alt_text or alt_text.lower() == 'enter image description here':
alt_text = 'Question image'
# Create an image preview card
preview_html = f"""
<div class="image-preview" style="margin: 10px 0; padding: 10px; background: #f9fafc; border-radius: 6px;">
<div style="display: flex; align-items: center; margin-bottom: 8px;">
<span style="font-size: 20px; margin-right: 8px;">πŸ–ΌοΈ</span>
<span style="color: #219ebc;">{alt_text}</span>
</div>
<a href="{fixed_src}" target="_blank" rel="noopener noreferrer"
style="color: #219ebc; text-decoration: none;">View image</a>
</div>
"""
new_soup = BeautifulSoup(preview_html, 'html.parser')
img.replace_with(new_soup)
# Style other elements
for link in soup.find_all('a'):
if 'View Image' not in (link.get_text() or ''):
href = link.get('href', '')
if href and not href.startswith(('http://', 'https://')):
link['href'] = fix_stack_exchange_url(href)
link['target'] = '_blank'
link['rel'] = 'noopener noreferrer'
link['style'] = 'color: #219ebc; text-decoration: none;'
# Add paragraph styling
for p in soup.find_all(['p', 'div']):
if not any(cls in (p.get('class', []) or []) for cls in ['image-preview', 'question-card']):
current_style = p.get('style', '')
p['style'] = f"{current_style}; margin: 0.8em 0; line-height: 1.6; color: #333333;"
# Add list styling
for ul in soup.find_all(['ul', 'ol']):
ul['style'] = 'margin: 0.8em 0; padding-left: 1.5em; color: #333333;'
for li in soup.find_all('li'):
li['style'] = 'margin: 0.4em 0; line-height: 1.6; color: #333333;'
# Add code block styling
for code in soup.find_all(['code', 'pre']):
code['style'] = 'background: #f9fafc; padding: 0.2em 0.4em; border-radius: 4px; font-family: monospace; color: #333333;'
return str(soup)
except Exception as e:
logger.error(f"Error processing question body: {str(e)}")
return str(text) if text else ""
def format_question(q: Dict) -> str:
"""Format a question for display based on its source."""
try:
# Extract and validate basic question data
title = q.get('title', 'Untitled')
source = q.get('source', '').lower()
# Format metadata section based on source
metadata_html = ""
content_html = ""
# Default metadata for questions with author/date
if 'author' in q or 'created_utc_ts' in q:
author = q.get('author', 'Unknown author')
created_date = format_neo4j_datetime(q.get('created_utc_ts'))
upvotes = q.get('upvotes', 0)
num_comments = q.get('num_comments', 0)
metadata_html = f"""
<div class="question-meta" style="font-size: 0.9em; margin-bottom: 15px;">
<span style="color: #219ebc; font-weight: 500;">{author}</span>
{' asked' if source == 'stack_exchange' else ' posted'} on
<span style="color: #023047;">{created_date}</span>
<div class="stats" style="margin-top: 5px;">
<span title="Upvotes"><span style="color: #219ebc;">β–²</span> {upvotes}</span>
<span style="margin-left: 15px;" title="Comments"><span style="color: #219ebc;">πŸ’¬</span> {num_comments}</span>
</div>
</div>
"""
# Handle content based on source and available fields
if source == "stack_exchange":
body = q.get('body', '')
if body:
content_html = f"""
<div class="question-content" style="margin-top: 20px; font-family: 'Segoe UI', system-ui, -apple-system, sans-serif; color: #023047; line-height: 1.6;">
{process_body(body, title)}
</div>
"""
elif source == "trivia":
correct_answer = q.get('correct_answer', '')
incorrect_answers = q.get('incorrect_answers', [])
answers = [correct_answer] + incorrect_answers if incorrect_answers else [correct_answer]
answers_html = "".join([
f"""
<div class="answer-option" style="margin: 8px 0; padding: 10px; background: #f9fafc; border-radius: 6px; border: 1px solid #8ecae6; border-left: 3px solid {'#4caf50' if answer == correct_answer else '#8ecae6'};">
<span style="color: {'#4caf50' if answer == correct_answer else '#023047'}; font-weight: {'500' if answer == correct_answer else 'normal'};">
{answer}
</span>
</div>
"""
for answer in answers
])
content_html = f"""
<div class="answers-container" style="margin-top: 15px;">
<div style="color: #023047; margin-bottom: 10px; font-weight: 500;">Answer options:</div>
{answers_html}
</div>
"""
elif source == "wikipedia":
correct_answer = q.get('correct_answer', '')
if correct_answer:
content_html = f"""
<div class="answer" style="margin-top: 15px; padding: 15px; background: #f9fafc; border-radius: 6px; border: 1px solid #8ecae6;">
<div style="color: #023047; margin-bottom: 10px; font-weight: 500;">Answer:</div>
<div style="color: #4caf50; font-weight: 500;">{correct_answer}</div>
</div>
"""
elif source == "reddit":
if 'subreddit' in q:
subreddit = q.get('subreddit', '')
metadata_html = metadata_html.replace(
'posted on',
f'posted in <span style="color: #219ebc; font-weight: 500;">r/{subreddit}</span> on'
)
if not content_html:
if 'body' in q:
content_html = f"""
<div class="question-content" style="margin-top: 20px; font-family: 'Segoe UI', system-ui, -apple-system, sans-serif; color: #023047; line-height: 1.6;">
{process_body(q['body'], title)}
</div>
"""
elif 'correct_answer' in q:
content_html = f"""
<div class="answer" style="margin-top: 15px; padding: 15px; background: #f9fafc; border-radius: 6px; border: 1px solid #8ecae6;">
<div style="color: #023047; margin-bottom: 10px; font-weight: 500;">Answer:</div>
<div style="color: #4caf50; font-weight: 500;">{q['correct_answer']}</div>
</div>
"""
# Get source-specific icon and color
source_icon = {
'stack_exchange': '⚑',
'reddit': 'πŸ”Έ',
'wikipedia': 'πŸ“š',
'trivia': '🎯',
}.get(source, '❔')
source_color = {
'stack_exchange': '#219ebc',
'reddit': '#fb8500',
'wikipedia': '#4caf50',
'trivia': '#ffb703',
}.get(source, '#219ebc')
source_display = source.title() if source else "Unknown"
source_badge = f"""
<div class="source-badge" style="display: inline-flex; align-items: center; padding: 4px 8px; background: #f9fafc; border-radius: 4px; margin-right: 10px; border: 1px solid {source_color};">
<span style="margin-right: 6px; font-size: 1.1em;">{source_icon}</span>
<span style="color: {source_color}; font-size: 0.9em; font-weight: 500;">{source_display}</span>
</div>
"""
# Handle matching interests display
matching_interests = q.get('matching_interests', [])
interest_types = q.get('interest_types', [])
interests_with_types = []
for interest, type_ in zip(matching_interests, interest_types):
if interest and type_:
interests_with_types.append({
'name': interest,
'type': type_
})
keywords = [i['name'] for i in interests_with_types if i['type'] == 'keyword']
topics = [i['name'] for i in interests_with_types if i['type'] == 'topic']
interests_display = []
if keywords:
interests_display.append(f"Keywords: {format_interest_list_for_display(set(keywords), max_items=3)}")
if topics:
interests_display.append(f"Topics: {format_interest_list_for_display(set(topics), max_items=3)}")
interests_str = " | ".join(interests_display) if interests_display else "No common interests found"
relevance_score = q.get('relevance_score', 0)
score_display = f"""
<div class="relevance-score" style="display: inline-block; padding: 4px 8px; background: #f9fafc; border-radius: 4px; margin-left: 10px; border: 1px solid #8ecae6;">
<span style="color: #219ebc; font-size: 0.9em;">Relevance: {relevance_score:.2f}</span>
</div>
""" if relevance_score > 0 else ""
# Create the question card HTML
question_html = f"""
<div class="question-card" style="background: #ffffff; padding: 20px; border-radius: 8px; margin: 15px 0; border: 1px solid #219ebc; box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);">
<div class="question-header" style="display: flex; justify-content: space-between; align-items: flex-start; margin-bottom: 15px; border-bottom: 1px solid #8ecae6; padding-bottom: 10px;">
<div style="flex: 1; display: flex; align-items: center;">
{source_badge}
<h3 style="color: #023047; margin: 0; font-size: 1.4em; display: inline;">{title}</h3>
</div>
{score_display}
</div>
{metadata_html}
<div class="interests-bar" style="margin: 15px 0; padding: 10px; background: #f9fafc; border-radius: 6px; border: 1px solid #8ecae6; border-left: 3px solid #219ebc;">
<div style="color: #023047; font-size: 0.9em; font-weight: 500;">Common Interests:</div>
<div style="color: #219ebc; font-weight: 500; margin-top: 5px;">{interests_str}</div>
</div>
{content_html}
</div>
"""
return question_html
except Exception as e:
logger.error(f"Error formatting question: {str(e)}")
return f"""
<div style="background: #fee2e2; padding: 15px; border-radius: 8px; margin: 10px 0; border: 1px solid #dc2626;">
<div style="color: #dc2626;">Error displaying question: {str(e)}</div>
</div>
"""
def loading_message() -> Tuple[str, str, str]:
"""Return loading message in proper HTML format."""
loading_html = """
<div class="loading-spinner">
<div style="text-align: center;">
<div style="border: 4px solid #60a5fa; border-top: 4px solid transparent; border-radius: 50%; width: 40px; height: 40px; animation: spin 1s linear infinite; margin: 20px auto;"></div>
<div style="color: #60a5fa; margin-top: 10px;">Analyzing interests and finding recommendations...</div>
</div>
</div>
"""
return loading_html, loading_html, loading_html
def recommend_questions(user1: str, user2: str) -> Tuple[str, str, str, List[Dict]]:
"""Main function to get recommendations and user interests."""
# Extract actual usernames from the formatted strings
user1 = user1.split(" (")[0] if " (" in user1 else user1
user2 = user2.split(" (")[0] if " (" in user2 else user2
recommender = QuestionRecommender()
try:
# Get interests for both users
user1_interests = recommender.get_user_interests(user1)
user2_interests = recommender.get_user_interests(user2)
# Find common interests
common_keywords = user1_interests['keywords'] & user2_interests['keywords']
common_topics = user1_interests['topics'] & user2_interests['topics']
# Format interests summary using display formatter
interests_summary = f"""
<div class="interests-summary">
<div class="user-interests">
<h3>{user1}'s Interests</h3>
<div class="interest-section">
<strong>Keywords:</strong> {format_interest_list_for_display(user1_interests['keywords'], max_items=8)}
</div>
<div class="interest-section">
<strong>Topics:</strong> {format_interest_list_for_display(user1_interests['topics'], max_items=5)}
</div>
</div>
<div class="user-interests">
<h3>{user2}'s Interests</h3>
<div class="interest-section">
<strong>Keywords:</strong> {format_interest_list_for_display(user2_interests['keywords'], max_items=8)}
</div>
<div class="interest-section">
<strong>Topics:</strong> {format_interest_list_for_display(user2_interests['topics'], max_items=5)}
</div>
</div>
<div class="common-interests">
<h3>Common Interests</h3>
<div class="interest-section">
<strong>Keywords:</strong> {format_interest_list_for_display(common_keywords, max_items=8)}
</div>
<div class="interest-section">
<strong>Topics:</strong> {format_interest_list_for_display(common_topics, max_items=5)}
</div>
</div>
</div>
"""
# Get all recommended questions - using original interests for matching
questions = recommender.find_common_questions(user1, user2, max_questions=50)
if questions:
questions_text = '<div class="questions-container">\n' + \
'\n'.join(format_question(q) for q in questions) + \
'\n</div>'
recommendation_type = '<h2 class="recommendation-header">Recommendations Based on Common Interests</h2>'
else:
questions_text = '<div class="no-questions">No questions found based on common interests.</div>'
recommendation_type = '<h2 class="recommendation-header">No Recommendations Available</h2>'
return interests_summary, recommendation_type, questions_text, questions
except Exception as e:
logger.error(f"Error in recommend_questions: {str(e)}")
return (
'<div class="error">Error fetching user interests. Please try again.</div>',
'<h2 class="error-header">Error</h2>',
f'<div class="error-message">An error occurred: {str(e)}</div>',
[]
)
finally:
recommender.close()
# Custom CSS for better styling
custom_css = """
.gradio-container {
max-width: 1200px !important;
margin: auto !important;
padding: 20px !important;
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif !important;
}
/* Dropdown styling */
.gradio-dropdown > ul {
max-height: 300px !important;
overflow-y: auto !important;
scrollbar-width: thin !important;
}
.gradio-dropdown > ul::-webkit-scrollbar {
width: 6px !important;
}
.gradio-dropdown > ul::-webkit-scrollbar-track {
background: #f9fafc !important;
border-radius: 3px !important;
}
.gradio-dropdown > ul::-webkit-scrollbar-thumb {
background: #219ebc !important;
border-radius: 3px !important;
}
.gradio-dropdown > ul::-webkit-scrollbar-thumb:hover {
background: #023047 !important;
}
.interests-summary {
background: #ffffff;
padding: 20px;
border-radius: 10px;
margin-bottom: 20px;
border: 1px solid #219ebc;
}
.user-interests, .common-interests {
background: #f9fafc;
padding: 15px;
border-radius: 8px;
margin: 10px 0;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
border: 1px solid #8ecae6;
}
.interest-section {
margin: 10px 0;
line-height: 1.5;
color: #333333;
}
/* Progress bar and loading animation */
.progress-bar > div {
background: #ffb703 !important;
}
.progress-bar {
background: #f9fafc !important;
}
.loading {
color: #219ebc !important;
}
/* Question section styling */
.questions-container {
margin-top: 20px;
}
.question-card {
background: #ffffff;
padding: 20px;
border-radius: 8px;
margin: 15px 0;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
border: 1px solid #219ebc;
transition: transform 0.2s ease;
}
.question-card:hover {
transform: translateY(-2px);
}
.question-header {
border-bottom: 1px solid #8ecae6;
padding-bottom: 10px;
margin-bottom: 15px;
}
.question-header h3 {
color: #023047 !important;
margin: 0;
font-size: 1.4em;
}
.source-badge {
background: #f9fafc !important;
border: 1px solid #219ebc !important;
color: #219ebc !important;
}
.interests-bar {
background: #f9fafc !important;
border: 1px solid #8ecae6 !important;
border-left: 3px solid #219ebc !important;
padding: 10px;
margin: 15px 0;
}
.interests-bar div {
color: #333333 !important;
}
.question-meta {
color: #333333 !important;
margin: 10px 0;
}
.question-meta span {
color: #219ebc !important;
}
.question-content {
color: #333333 !important;
line-height: 1.6;
}
.question-content a {
color: #219ebc !important;
text-decoration: none;
}
.question-content code, .question-content pre {
background: #f9fafc !important;
border: 1px solid #8ecae6 !important;
color: #333333 !important;
padding: 0.2em 0.4em;
border-radius: 4px;
}
.answer-option {
background: #f9fafc !important;
border: 1px solid #8ecae6 !important;
margin: 8px 0;
padding: 10px;
border-radius: 6px;
}
.answer {
background: #f9fafc !important;
border: 1px solid #8ecae6 !important;
padding: 15px;
border-radius: 6px;
margin-top: 15px;
}
.image-preview {
background: #f9fafc !important;
border: 1px solid #8ecae6 !important;
padding: 10px;
border-radius: 6px;
margin: 10px 0;
}
.relevance-score {
background: #f9fafc !important;
border: 1px solid #8ecae6 !important;
padding: 4px 8px;
border-radius: 4px;
}
.relevance-score span {
color: #219ebc !important;
}
.recommendation-header {
color: #023047 !important;
padding: 10px 0;
margin: 20px 0;
border-bottom: 2px solid #219ebc;
}
.error {
color: #dc2626;
padding: 15px;
background: #fee2e2;
border-radius: 8px;
margin: 10px 0;
border: 1px solid #dc2626;
}
.error-header {
color: #dc2626;
}
.error-message {
background: #fee2e2;
padding: 15px;
border-radius: 8px;
color: #dc2626;
border: 1px solid #dc2626;
}
.no-questions {
padding: 20px;
background: #f9fafc;
border-radius: 8px;
text-align: center;
color: #333333;
border: 1px solid #219ebc;
}
h1, h2, h3 {
color: #023047 !important;
}
strong {
color: #219ebc;
}
.user-interests h3, .common-interests h3 {
color: #023047;
margin-top: 0;
margin-bottom: 15px;
font-size: 1.2rem;
}
@keyframes spin {
0% { transform: rotate(0deg); }
100% { transform: rotate(360deg); }
}
/* Additional Gradio-specific overrides */
.gr-button-primary {
background: #ffb703 !important;
color: #ffffff !important;
}
.gr-button-secondary {
background: #219ebc !important;
color: #ffffff !important;
}
.gr-form {
background: #ffffff !important;
border: 1px solid #219ebc !important;
}
.gr-input {
border-color: #219ebc !important;
}
.gr-input:focus {
border-color: #023047 !important;
}
.gr-box {
background: #ffffff !important;
border: 1px solid #219ebc !important;
}
.gr-panel {
background: #ffffff !important;
border: 1px solid #219ebc !important;
}
"""
force_light_mode_js = """
function() {
// Remove dark mode class from html element
document.documentElement.classList.remove('dark');
// Set data-theme attribute to light
document.documentElement.setAttribute('data-theme', 'light');
// Override any system preference
document.documentElement.style.colorScheme = 'light';
// Also try to set it on the body
document.body.classList.remove('dark');
document.body.setAttribute('data-theme', 'light');
}
"""
def main():
# Create Gradio interface
recommender = QuestionRecommender()
users = recommender.get_all_users()
recommender.close()
theme = gr.themes.Base().set(
body_background_fill="#f9fafc",
block_background_fill="#ffffff",
block_border_width="1px",
block_border_color="#219ebc",
block_title_text_color="#023047",
block_label_text_color="#333333",
input_background_fill="#ffffff",
input_border_color="#219ebc",
input_border_width="1px",
button_primary_background_fill="#ffb703",
button_secondary_background_fill="#219ebc",
background_fill_primary="#ffffff",
background_fill_secondary="#f9fafc"
)
with gr.Blocks(title="Let's Talk - Question Recommender", theme=theme, css=custom_css, mode="light", js=force_light_mode_js) as iface:
gr.Markdown("""
# 🀝 Let's Talk - Question Recommender
Find questions that two users might be interested in discussing together based on their common interests.
""")
with gr.Row(equal_height=True):
with gr.Column(scale=1):
user1_dropdown = gr.Dropdown(
choices=users,
label="πŸ‘€ First User",
interactive=True,
elem_id="user1-input"
)
with gr.Column(scale=1):
user2_dropdown = gr.Dropdown(
choices=users,
label="πŸ‘€ Second User",
interactive=True,
elem_id="user2-input"
)
recommend_btn = gr.Button(
"πŸ” Get Recommendations",
variant="primary",
size="lg"
)
with gr.Row():
interests_output = gr.HTML(label="Common Interests")
recommendation_type = gr.HTML()
questions_output = gr.HTML()
def recommend_and_store(user1, user2):
"""Get recommendations and store questions."""
interests, rec_type, questions_html, questions_data = recommend_questions(user1, user2)
return interests, rec_type, questions_html
# Wire up the components
recommend_btn.click(
fn=loading_message,
outputs=[interests_output, recommendation_type, questions_output],
queue=False
).then(
fn=recommend_and_store,
inputs=[user1_dropdown, user2_dropdown],
outputs=[interests_output, recommendation_type, questions_output]
)
iface.launch(allowed_paths=["*"],
show_error=True)
if __name__ == "__main__":
main()