Spaces:
Sleeping
Sleeping
Update app.py
Browse filesremoved gr.state
app.py
CHANGED
@@ -1,27 +1,30 @@
|
|
1 |
import gradio as gr
|
2 |
-
print("Gradio version:", gr.__version__)
|
3 |
from datasets import load_dataset
|
4 |
from transformers import AutoTokenizer, TFAutoModelForSeq2SeqLM
|
5 |
|
|
|
6 |
model_name = "NinaMwangi/T5_finbot"
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
model = TFAutoModelForSeq2SeqLM.from_pretrained(model_name)
|
9 |
|
|
|
10 |
dataset = load_dataset("virattt/financial-qa-10K")["train"]
|
11 |
|
12 |
-
#
|
|
|
|
|
|
|
13 |
def get_context_for_question(question):
|
14 |
for item in dataset:
|
15 |
if item["question"].strip().lower() == question.strip().lower():
|
16 |
return item["context"]
|
17 |
return "No relevant context found."
|
18 |
|
19 |
-
#
|
20 |
-
def generate_answer(question
|
21 |
context = get_context_for_question(question)
|
22 |
prompt = f"Q: {question} Context: {context} A:"
|
23 |
|
24 |
-
|
25 |
inputs = tokenizer(
|
26 |
prompt,
|
27 |
return_tensors="tf",
|
@@ -41,37 +44,34 @@ def generate_answer(question, chat_history):
|
|
41 |
chat_history.append((question, answer))
|
42 |
return "", chat_history
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
with gr.Blocks(theme=gr.themes.Base()) as interface:
|
45 |
gr.Markdown(
|
46 |
"""
|
47 |
# 💬 Finance QA Chatbot
|
48 |
Ask a finance-related question and get an accurate, concise response.
|
49 |
Built using a fine-tuned T5 Transformer on financial Q&A data.
|
50 |
-
"""
|
51 |
)
|
52 |
|
53 |
chatbot = gr.Chatbot(label="Finance Chatbot", height=400, bubble_full_width=False)
|
|
|
54 |
with gr.Row():
|
55 |
with gr.Column(scale=8):
|
56 |
-
question_box = gr.Textbox(
|
57 |
-
placeholder="Ask a finance question...", show_label=False, lines=2
|
58 |
-
)
|
59 |
with gr.Column(scale=1):
|
60 |
submit_btn = gr.Button("Send")
|
61 |
|
62 |
clear_btn = gr.Button("Clear Chat")
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
# Bind function
|
68 |
-
submit_btn.click(
|
69 |
-
fn=generate_answer,
|
70 |
-
inputs=[question_box, state],
|
71 |
-
outputs=[question_box, chatbot, state]
|
72 |
-
)
|
73 |
-
|
74 |
-
clear_btn.click(lambda: [], inputs=[], outputs=[chatbot, state])
|
75 |
|
76 |
-
#
|
77 |
-
interface.launch(
|
|
|
1 |
import gradio as gr
|
|
|
2 |
from datasets import load_dataset
|
3 |
from transformers import AutoTokenizer, TFAutoModelForSeq2SeqLM
|
4 |
|
5 |
+
# Load model and tokenizer
|
6 |
model_name = "NinaMwangi/T5_finbot"
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
model = TFAutoModelForSeq2SeqLM.from_pretrained(model_name)
|
9 |
|
10 |
+
# Load dataset for context retrieval
|
11 |
dataset = load_dataset("virattt/financial-qa-10K")["train"]
|
12 |
|
13 |
+
# Global chat history
|
14 |
+
chat_history = []
|
15 |
+
|
16 |
+
# Context lookup
|
17 |
def get_context_for_question(question):
|
18 |
for item in dataset:
|
19 |
if item["question"].strip().lower() == question.strip().lower():
|
20 |
return item["context"]
|
21 |
return "No relevant context found."
|
22 |
|
23 |
+
# Inference function
|
24 |
+
def generate_answer(question):
|
25 |
context = get_context_for_question(question)
|
26 |
prompt = f"Q: {question} Context: {context} A:"
|
27 |
|
|
|
28 |
inputs = tokenizer(
|
29 |
prompt,
|
30 |
return_tensors="tf",
|
|
|
44 |
chat_history.append((question, answer))
|
45 |
return "", chat_history
|
46 |
|
47 |
+
# Clear history function
|
48 |
+
def clear_chat():
|
49 |
+
global chat_history
|
50 |
+
chat_history = []
|
51 |
+
return chat_history
|
52 |
+
|
53 |
+
# Gradio UI
|
54 |
with gr.Blocks(theme=gr.themes.Base()) as interface:
|
55 |
gr.Markdown(
|
56 |
"""
|
57 |
# 💬 Finance QA Chatbot
|
58 |
Ask a finance-related question and get an accurate, concise response.
|
59 |
Built using a fine-tuned T5 Transformer on financial Q&A data.
|
60 |
+
"""
|
61 |
)
|
62 |
|
63 |
chatbot = gr.Chatbot(label="Finance Chatbot", height=400, bubble_full_width=False)
|
64 |
+
|
65 |
with gr.Row():
|
66 |
with gr.Column(scale=8):
|
67 |
+
question_box = gr.Textbox(placeholder="Ask a finance question...", show_label=False, lines=2)
|
|
|
|
|
68 |
with gr.Column(scale=1):
|
69 |
submit_btn = gr.Button("Send")
|
70 |
|
71 |
clear_btn = gr.Button("Clear Chat")
|
72 |
|
73 |
+
submit_btn.click(fn=generate_answer, inputs=question_box, outputs=[question_box, chatbot])
|
74 |
+
clear_btn.click(fn=clear_chat, outputs=chatbot)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
+
# Launch app
|
77 |
+
interface.launch()
|