Nitin00043's picture
Update app.py
aebafcf verified
raw
history blame
1.9 kB
import torch
from transformers import Pix2StructForConditionalGeneration, Pix2StructProcessor
import gradio as gr
from PIL import Image
# Use a valid model identifier. Here we use "google/matcha-base".
model_name = "google/matcha-base"
# Load the pre-trained Pix2Struct model and processor
model = Pix2StructForConditionalGeneration.from_pretrained(model_name)
processor = Pix2StructProcessor.from_pretrained(model_name)
# Move model to GPU if available and set to evaluation mode
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
model.eval()
def solve_math_problem(image):
# Preprocess the image and include a prompt.
inputs = processor(images=image, text="Solve the math problem:", return_tensors="pt")
# Move all tensors to the same device as the model
inputs = {key: value.to(device) for key, value in inputs.items()}
# Generate the solution using beam search within a no_grad context
with torch.no_grad():
predictions = model.generate(
**inputs,
max_new_tokens=150, # Increase this if longer answers are needed
num_beams=5, # Beam search for more stable outputs
early_stopping=True,
temperature=0.5 # Lower temperature for more deterministic output
)
# Decode the generated tokens to a string, skipping special tokens
solution = processor.decode(predictions[0], skip_special_tokens=True)
return solution
# Set up the Gradio interface
demo = gr.Interface(
fn=solve_math_problem,
inputs=gr.Image(type="pil", label="Upload Handwritten Math Problem"),
outputs=gr.Textbox(label="Solution"),
title="Handwritten Math Problem Solver",
description="Upload an image of a handwritten math problem and the model will attempt to solve it.",
theme="soft"
)
if __name__ == "__main__":
demo.launch()