File size: 8,156 Bytes
693c47c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import requests
import io
import re
import numpy as np
import faiss
import torch
import time
import streamlit as st
from pypdf import PdfReader
from rank_bm25 import BM25Okapi
from sentence_transformers import SentenceTransformer
from accelerate import Accelerator
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from bert_score import score

def download_pdf(url):
    """Downloads a PDF from a URL and returns its content as bytes."""
    try:
        response = requests.get(url, stream=True)
        response.raise_for_status()
        return response.content
    except requests.exceptions.RequestException as e:
        st.error(f"Error downloading PDF from {url}: {e}")
        return None

def extract_text_from_pdf(pdf_bytes):
    """Extracts text from a PDF byte stream."""
    try:
        pdf_file = io.BytesIO(pdf_bytes)
        reader = PdfReader(pdf_file)
        text = ""
        for page in reader.pages:
            text += page.extract_text() or "" #Handle None return.
        return text
    except Exception as e:
        st.error(f"Error extracting text from PDF: {e}")
        return None

def preprocess_text(text):
    """Cleans text while retaining financial symbols and ensuring proper formatting."""
    if not text:
        return ""
    
    # Define allowed financial symbols
    financial_symbols = r"\$\€\₹\£\¥\₩\₽\₮\₦\₲"

    # Allow numbers, letters, spaces, financial symbols, common punctuation (.,%/-)
    text = re.sub(fr"[^\w\s{financial_symbols}.,%/₹$€¥£-]", "", text)

    # Normalize spaces
    text = re.sub(r'\s+', ' ', text).strip()
    
    return text

def load_financial_pdfs(pdf_urls):
    """Downloads and extracts text from a list of PDF URLs."""
    all_data = []
    for url in pdf_urls:
        pdf_bytes = download_pdf(url)
        if pdf_bytes:
            text = extract_text_from_pdf(pdf_bytes)
            if text:
                preprocessed_text = preprocess_text(text)
                all_data.append(preprocessed_text)
    return all_data

# Example Usage (Replace with actual PDF URLs)
pdf_urls = [
    "https://www.latentview.com/wp-content/uploads/2023/07/LatentView-Annual-Report-2022-23.pdf",
    "https://www.latentview.com/wp-content/uploads/2024/08/LatentView-Annual-Report-2023-24.pdf",
]

all_data = load_financial_pdfs(pdf_urls)

def chunk_text(text, chunk_size=700, overlap_size=150):
    """Chunks text without breaking words in the middle (corrected overlap)."""
    chunks = []
    start = 0
    text_length = len(text)

    while start < text_length:
        end = min(start + chunk_size, text_length)

        # Ensure we do not split words
        if end < text_length and text[end].isalnum():
            last_space = text.rfind(" ", start, end)  # Find last space within the chunk
            if last_space != -1:  # If a space is found, adjust the end
                end = last_space

        chunk = text[start:end].strip()
        if chunk:  # Avoid empty chunks
            chunks.append(chunk)

        if end == text_length:
            break

        # Corrected overlap calculation
        overlap_start = max(0, end - overlap_size)
        if overlap_start < end: # Prevent infinite loop if overlap_start is equal to end.
            last_overlap_space = text.rfind(" ", 0, overlap_start)
            if last_overlap_space != -1 and last_overlap_space > start:
                start = last_overlap_space + 1
            else:
                start = end # If no space found, start at the last end.
        else:
            start = end

    return chunks

chunks = []
for data in all_data:
  chunks.extend(chunk_text(data))

embedding_model = SentenceTransformer("BAAI/bge-large-en")
# embedding_model = SentenceTransformer('multi-qa-mpnet-base-dot-v1')
embeddings = embedding_model.encode(chunks)

index = faiss.IndexFlatL2(embeddings.shape[1])
index.add(embeddings)


def bm25_retrieval(query, documents, top_k=3):
    tokenized_docs = [doc.split() for doc in documents]
    bm25 = BM25Okapi(tokenized_docs)
    return [documents[i] for i in np.argsort(bm25.get_scores(query.split()))[::-1][:top_k]]

def adaptive_retrieval(query, index, chunks, top_k=3, bm25_weight=0.5):
    query_embedding = embedding_model.encode([query], convert_to_numpy=True, dtype=np.float16)
    _, indices = index.search(query_embedding, top_k)
    vector_results = [chunks[i] for i in indices[0]]
    bm25_results = bm25_retrieval(query, chunks, top_k)
    return list(set(vector_results + bm25_results))

def rerank(query, results):
    query_embedding = embedding_model.encode([query], convert_to_numpy=True)
    result_embeddings = embedding_model.encode(results, convert_to_numpy=True)
    similarities = np.dot(result_embeddings, query_embedding.T).flatten()
    return [results[i] for i in np.argsort(similarities)[::-1]], similarities

#Chunk merging.
def merge_chunks(retrieved_chunks, overlap_size=100):
    """Merges overlapping chunks properly by detecting the actual overlap."""
    merged_chunks = []
    buffer = retrieved_chunks[0] if retrieved_chunks else ""

    for i in range(1, len(retrieved_chunks)):
        chunk = retrieved_chunks[i]

        # Find actual overlap
        overlap_start = buffer[-overlap_size:]  # Get the last `overlap_size` chars of the previous chunk
        overlap_index = chunk.find(overlap_start)  # Find where this part appears in the new chunk

        if overlap_index != -1:
            # Merge only the non-overlapping part
            buffer += chunk[overlap_index + overlap_size:]
        else:
            # Store completed merged chunk and start a new one
            merged_chunks.append(buffer)
            buffer = chunk

    if buffer:
        merged_chunks.append(buffer)

    return merged_chunks

# def calculate_confidence(query, context, similarities):
#     return np.mean(similarities)  # Averaged similarity scores
def calculate_confidence(query, answer):
    P, R, F1 = score([answer], [query], lang="en", verbose=False)
    return F1.item()

# Load SLM
accelerator = Accelerator()
accelerator.free_memory()
MODEL_NAME = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, device_map="auto", cache_dir="./my_models")
model = accelerator.prepare(model)
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)

def generate_response(query, context):
    prompt = f"""Your task is to analyze the given Context and answer the Question concisely in plain English. 
    **Guidelines:**
    - Do NOT include </think> tag, just provide the final answer only.
    - Provide a direct, factual answer based strictly on the Context.
    - Avoid generating Python code, solutions, or any irrelevant information.
    
    Context: {context}
    Question: {query}    
    Answer:
"""
    response = generator(prompt, max_new_tokens=150, num_return_sequences=1)[0]['generated_text'] #example 100 max new tokens
    print(response)
    answer = response.split("Answer:")[1].strip()
    return answer

import gradio as gr

# Your existing functions should be defined before using them
# adaptive_retrieval, merge_chunks, rerank, generate_response, calculate_confidence

def inference_pipeline(query):
    retrieved_chunks = adaptive_retrieval(query, index, chunks)
    merged_chunks = merge_chunks(retrieved_chunks, 150)
    reranked_chunks, similarities = rerank(query, merged_chunks)
    context = " ".join(reranked_chunks[:3])  # Take top 3 most relevant
    response = generate_response(query, context)
    confidence = calculate_confidence(query, context, similarities)
    return response, confidence

# Define the Gradio UI
ui = gr.Interface(
    fn=inference_pipeline,
    inputs=gr.Textbox(label="Enter your financial question"),
    outputs=[
        gr.Textbox(label="Generated Response"),
        gr.Number(label="Confidence Score"),
    ],
    title="Financial Q&A Assistant",
    description="Ask financial questions and get AI-powered responses with confidence scores.",
)

# Launch the UI
ui.launch(share=True)  # share=True allows public access