File size: 6,055 Bytes
693c47c
 
 
 
 
 
e649daa
693c47c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e649daa
693c47c
e649daa
 
693c47c
 
 
e649daa
 
 
 
693c47c
e649daa
693c47c
 
 
e649daa
 
 
 
 
 
 
 
 
 
 
 
693c47c
 
e649daa
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import requests
import io
import re
import numpy as np
import faiss
import time
import gradio as gr
from pypdf import PdfReader
from rank_bm25 import BM25Okapi
from sentence_transformers import SentenceTransformer
from accelerate import Accelerator
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline

def chunk_text(text, chunk_size=700, overlap_size=150):
    """Chunks text without breaking words in the middle (corrected overlap)."""
    chunks = []
    start = 0
    text_length = len(text)

    while start < text_length:
        end = min(start + chunk_size, text_length)

        # Ensure we do not split words
        if end < text_length and text[end].isalnum():
            last_space = text.rfind(" ", start, end)  # Find last space within the chunk
            if last_space != -1:  # If a space is found, adjust the end
                end = last_space

        chunk = text[start:end].strip()
        if chunk:  # Avoid empty chunks
            chunks.append(chunk)

        if end == text_length:
            break

        # Corrected overlap calculation
        overlap_start = max(0, end - overlap_size)
        if overlap_start < end: # Prevent infinite loop if overlap_start is equal to end.
            last_overlap_space = text.rfind(" ", 0, overlap_start)
            if last_overlap_space != -1 and last_overlap_space > start:
                start = last_overlap_space + 1
            else:
                start = end # If no space found, start at the last end.
        else:
            start = end

    return chunks

chunks = []
for data in all_data:
  chunks.extend(chunk_text(data))

embedding_model = SentenceTransformer("BAAI/bge-large-en")
# embedding_model = SentenceTransformer('multi-qa-mpnet-base-dot-v1')
embeddings = embedding_model.encode(chunks)

index = faiss.IndexFlatL2(embeddings.shape[1])
index.add(embeddings)

def bm25_retrieval(query, documents, top_k=3):
    tokenized_docs = [doc.split() for doc in documents]
    bm25 = BM25Okapi(tokenized_docs)
    return [documents[i] for i in np.argsort(bm25.get_scores(query.split()))[::-1][:top_k]]

def adaptive_retrieval(query, index, chunks, top_k=3, bm25_weight=0.5):
    query_embedding = embedding_model.encode([query], convert_to_numpy=True, dtype=np.float16)
    _, indices = index.search(query_embedding, top_k)
    vector_results = [chunks[i] for i in indices[0]]
    bm25_results = bm25_retrieval(query, chunks, top_k)
    return list(set(vector_results + bm25_results))

def rerank(query, results):
    query_embedding = embedding_model.encode([query], convert_to_numpy=True)
    result_embeddings = embedding_model.encode(results, convert_to_numpy=True)
    similarities = np.dot(result_embeddings, query_embedding.T).flatten()
    return [results[i] for i in np.argsort(similarities)[::-1]], similarities

#Chunk merging.
def merge_chunks(retrieved_chunks, overlap_size=100):
    """Merges overlapping chunks properly by detecting the actual overlap."""
    merged_chunks = []
    buffer = retrieved_chunks[0] if retrieved_chunks else ""

    for i in range(1, len(retrieved_chunks)):
        chunk = retrieved_chunks[i]

        # Find actual overlap
        overlap_start = buffer[-overlap_size:]  # Get the last `overlap_size` chars of the previous chunk
        overlap_index = chunk.find(overlap_start)  # Find where this part appears in the new chunk

        if overlap_index != -1:
            # Merge only the non-overlapping part
            buffer += chunk[overlap_index + overlap_size:]
        else:
            # Store completed merged chunk and start a new one
            merged_chunks.append(buffer)
            buffer = chunk

    if buffer:
        merged_chunks.append(buffer)

    return merged_chunks

# def calculate_confidence(query, context, similarities):
#     return np.mean(similarities)  # Averaged similarity scores
def calculate_confidence(query, answer):
    P, R, F1 = score([answer], [query], lang="en", verbose=False)
    return F1.item()

# Load SLM
accelerator = Accelerator()
accelerator.free_memory()
MODEL_NAME = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, device_map="auto", cache_dir="./my_models")
model = accelerator.prepare(model)
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)

def generate_response(query, context):
    prompt = f"""Your task is to analyze the given Context and answer the Question concisely in plain English. 
    **Guidelines:**
    - Do NOT include </think> tag, just provide the final answer only.
    - Provide a direct, factual answer based strictly on the Context.
    - Avoid generating Python code, solutions, or any irrelevant information.
    Context: {context}
    Question: {query}     
    Answer:
    """
    response = generator(prompt, max_new_tokens=150, num_return_sequences=1)[0]['generated_text']
    answer = response.split("Answer:")[1].strip()
    return answer

def process_query(pdf_urls_text, query):
    pdf_urls = [url.strip() for url in pdf_urls_text.split("\n") if url.strip()]
    if not pdf_urls:
        return "Please enter at least one PDF URL."

    index, chunks = load_and_index_data(pdf_urls)
    retrieved_chunks = adaptive_retrieval(query, index, chunks)
    merged_chunks = merge_chunks(retrieved_chunks, 150)
    reranked_chunks, similarities = rerank(query, merged_chunks)
    context = " ".join(reranked_chunks[:3])
    answer = generate_response(query, context)
    confidence = calculate_confidence(query, answer)
    full_response = f"{answer}\n\nConfidence: {confidence:.2f}"
    return full_response

iface = gr.Interface(
    fn=process_query,
    inputs=[gr.Textbox(lines=3, placeholder="Enter PDF URLs (one per line)"), gr.Textbox(placeholder="Enter your financial question")],
    outputs="text",
    title="Financial Document Q&A Chatbot",
    description="Enter PDF URLs and your question to get answers from the documents."
)

iface.launch()
accelerator.free_memory()