Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,59 +3,94 @@ import io
|
|
3 |
import re
|
4 |
import numpy as np
|
5 |
import faiss
|
6 |
-
import
|
7 |
-
import gradio as gr
|
8 |
from pypdf import PdfReader
|
9 |
from rank_bm25 import BM25Okapi
|
10 |
from sentence_transformers import SentenceTransformer
|
11 |
from accelerate import Accelerator
|
12 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
|
|
|
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
else:
|
43 |
-
start = end
|
44 |
-
|
45 |
-
start = end
|
46 |
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
-
chunks = []
|
50 |
-
for data in all_data:
|
51 |
-
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
56 |
|
57 |
-
index =
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
def bm25_retrieval(query, documents, top_k=3):
|
61 |
tokenized_docs = [doc.split() for doc in documents]
|
@@ -75,47 +110,26 @@ def rerank(query, results):
|
|
75 |
similarities = np.dot(result_embeddings, query_embedding.T).flatten()
|
76 |
return [results[i] for i in np.argsort(similarities)[::-1]], similarities
|
77 |
|
78 |
-
#Chunk merging.
|
79 |
def merge_chunks(retrieved_chunks, overlap_size=100):
|
80 |
-
"""Merges overlapping chunks properly by detecting the actual overlap."""
|
81 |
merged_chunks = []
|
82 |
buffer = retrieved_chunks[0] if retrieved_chunks else ""
|
83 |
-
|
84 |
for i in range(1, len(retrieved_chunks)):
|
85 |
chunk = retrieved_chunks[i]
|
86 |
-
|
87 |
-
|
88 |
-
overlap_start = buffer[-overlap_size:] # Get the last `overlap_size` chars of the previous chunk
|
89 |
-
overlap_index = chunk.find(overlap_start) # Find where this part appears in the new chunk
|
90 |
-
|
91 |
if overlap_index != -1:
|
92 |
-
# Merge only the non-overlapping part
|
93 |
buffer += chunk[overlap_index + overlap_size:]
|
94 |
else:
|
95 |
-
# Store completed merged chunk and start a new one
|
96 |
merged_chunks.append(buffer)
|
97 |
buffer = chunk
|
98 |
-
|
99 |
if buffer:
|
100 |
merged_chunks.append(buffer)
|
101 |
-
|
102 |
return merged_chunks
|
103 |
|
104 |
-
# def calculate_confidence(query, context, similarities):
|
105 |
-
# return np.mean(similarities) # Averaged similarity scores
|
106 |
def calculate_confidence(query, answer):
|
107 |
P, R, F1 = score([answer], [query], lang="en", verbose=False)
|
108 |
return F1.item()
|
109 |
|
110 |
-
# Load SLM
|
111 |
-
accelerator = Accelerator()
|
112 |
-
accelerator.free_memory()
|
113 |
-
MODEL_NAME = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
|
114 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
115 |
-
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, device_map="auto", cache_dir="./my_models")
|
116 |
-
model = accelerator.prepare(model)
|
117 |
-
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
118 |
-
|
119 |
def generate_response(query, context):
|
120 |
prompt = f"""Your task is to analyze the given Context and answer the Question concisely in plain English.
|
121 |
**Guidelines:**
|
@@ -130,12 +144,7 @@ def generate_response(query, context):
|
|
130 |
answer = response.split("Answer:")[1].strip()
|
131 |
return answer
|
132 |
|
133 |
-
def process_query(
|
134 |
-
pdf_urls = [url.strip() for url in pdf_urls_text.split("\n") if url.strip()]
|
135 |
-
if not pdf_urls:
|
136 |
-
return "Please enter at least one PDF URL."
|
137 |
-
|
138 |
-
index, chunks = load_and_index_data(pdf_urls)
|
139 |
retrieved_chunks = adaptive_retrieval(query, index, chunks)
|
140 |
merged_chunks = merge_chunks(retrieved_chunks, 150)
|
141 |
reranked_chunks, similarities = rerank(query, merged_chunks)
|
@@ -147,11 +156,11 @@ def process_query(pdf_urls_text, query):
|
|
147 |
|
148 |
iface = gr.Interface(
|
149 |
fn=process_query,
|
150 |
-
inputs=
|
151 |
outputs="text",
|
152 |
title="Financial Document Q&A Chatbot",
|
153 |
-
description="
|
154 |
)
|
155 |
|
156 |
iface.launch()
|
157 |
-
accelerator.free_memory()
|
|
|
3 |
import re
|
4 |
import numpy as np
|
5 |
import faiss
|
6 |
+
import torch
|
|
|
7 |
from pypdf import PdfReader
|
8 |
from rank_bm25 import BM25Okapi
|
9 |
from sentence_transformers import SentenceTransformer
|
10 |
from accelerate import Accelerator
|
11 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
12 |
+
from bert_score import score
|
13 |
+
import gradio as gr
|
14 |
|
15 |
+
# --- Preload Data ---
|
16 |
+
DEFAULT_PDF_URLS = [
|
17 |
+
"https://www.latentview.com/wp-content/uploads/2023/07/LatentView-Annual-Report-2022-23.pdf",
|
18 |
+
"https://www.latentview.com/wp-content/uploads/2024/08/LatentView-Annual-Report-2023-24.pdf"
|
19 |
+
]
|
20 |
+
|
21 |
+
def preload_data(pdf_urls):
|
22 |
+
embedding_model = SentenceTransformer("BAAI/bge-large-en")
|
23 |
+
|
24 |
+
def download_pdf(url):
|
25 |
+
response = requests.get(url, stream=True)
|
26 |
+
response.raise_for_status()
|
27 |
+
return response.content
|
28 |
+
|
29 |
+
def extract_text_from_pdf(pdf_bytes):
|
30 |
+
pdf_file = io.BytesIO(pdf_bytes)
|
31 |
+
reader = PdfReader(pdf_file)
|
32 |
+
text = ""
|
33 |
+
for page in reader.pages:
|
34 |
+
text += page.extract_text() or ""
|
35 |
+
return text
|
36 |
+
|
37 |
+
def preprocess_text(text):
|
38 |
+
financial_symbols = r"\$\€\₹\£\¥\₩\₽\₮\₦\₲"
|
39 |
+
text = re.sub(fr"[^\w\s{financial_symbols}.,%/₹$€¥£-]", "", text)
|
40 |
+
text = re.sub(r'\s+', ' ', text).strip()
|
41 |
+
return text
|
42 |
+
|
43 |
+
def chunk_text(text, chunk_size=700, overlap_size=150):
|
44 |
+
chunks = []
|
45 |
+
start = 0
|
46 |
+
text_length = len(text)
|
47 |
+
while start < text_length:
|
48 |
+
end = min(start + chunk_size, text_length)
|
49 |
+
if end < text_length and text[end].isalnum():
|
50 |
+
last_space = text.rfind(" ", start, end)
|
51 |
+
if last_space != -1:
|
52 |
+
end = last_space
|
53 |
+
chunk = text[start:end].strip()
|
54 |
+
if chunk:
|
55 |
+
chunks.append(chunk)
|
56 |
+
if end == text_length:
|
57 |
+
break
|
58 |
+
overlap_start = max(0, end - overlap_size)
|
59 |
+
if overlap_start < end:
|
60 |
+
last_overlap_space = text.rfind(" ", 0, overlap_start)
|
61 |
+
if last_overlap_space != -1 and last_overlap_space > start:
|
62 |
+
start = last_overlap_space + 1
|
63 |
+
else:
|
64 |
+
start = end
|
65 |
else:
|
66 |
+
start = end
|
67 |
+
return chunks
|
|
|
68 |
|
69 |
+
all_data = []
|
70 |
+
for url in pdf_urls:
|
71 |
+
pdf_bytes = download_pdf(url)
|
72 |
+
text = extract_text_from_pdf(pdf_bytes)
|
73 |
+
preprocessed_text = preprocess_text(text)
|
74 |
+
all_data.append(preprocessed_text)
|
75 |
|
76 |
+
chunks = []
|
77 |
+
for data in all_data:
|
78 |
+
chunks.extend(chunk_text(data))
|
79 |
|
80 |
+
embeddings = embedding_model.encode(chunks)
|
81 |
+
index = faiss.IndexFlatL2(embeddings.shape[1])
|
82 |
+
index.add(embeddings)
|
83 |
+
|
84 |
+
return index, chunks
|
85 |
|
86 |
+
index, chunks = preload_data(DEFAULT_PDF_URLS)
|
87 |
+
embedding_model = SentenceTransformer("BAAI/bge-large-en")
|
88 |
+
accelerator = Accelerator()
|
89 |
+
MODEL_NAME = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
|
90 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
91 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, device_map="auto", trust_remote_code=True, cache_dir="./my_models")
|
92 |
+
model = accelerator.prepare(model)
|
93 |
+
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
94 |
|
95 |
def bm25_retrieval(query, documents, top_k=3):
|
96 |
tokenized_docs = [doc.split() for doc in documents]
|
|
|
110 |
similarities = np.dot(result_embeddings, query_embedding.T).flatten()
|
111 |
return [results[i] for i in np.argsort(similarities)[::-1]], similarities
|
112 |
|
|
|
113 |
def merge_chunks(retrieved_chunks, overlap_size=100):
|
|
|
114 |
merged_chunks = []
|
115 |
buffer = retrieved_chunks[0] if retrieved_chunks else ""
|
|
|
116 |
for i in range(1, len(retrieved_chunks)):
|
117 |
chunk = retrieved_chunks[i]
|
118 |
+
overlap_start = buffer[-overlap_size:]
|
119 |
+
overlap_index = chunk.find(overlap_start)
|
|
|
|
|
|
|
120 |
if overlap_index != -1:
|
|
|
121 |
buffer += chunk[overlap_index + overlap_size:]
|
122 |
else:
|
|
|
123 |
merged_chunks.append(buffer)
|
124 |
buffer = chunk
|
|
|
125 |
if buffer:
|
126 |
merged_chunks.append(buffer)
|
|
|
127 |
return merged_chunks
|
128 |
|
|
|
|
|
129 |
def calculate_confidence(query, answer):
|
130 |
P, R, F1 = score([answer], [query], lang="en", verbose=False)
|
131 |
return F1.item()
|
132 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
def generate_response(query, context):
|
134 |
prompt = f"""Your task is to analyze the given Context and answer the Question concisely in plain English.
|
135 |
**Guidelines:**
|
|
|
144 |
answer = response.split("Answer:")[1].strip()
|
145 |
return answer
|
146 |
|
147 |
+
def process_query(query):
|
|
|
|
|
|
|
|
|
|
|
148 |
retrieved_chunks = adaptive_retrieval(query, index, chunks)
|
149 |
merged_chunks = merge_chunks(retrieved_chunks, 150)
|
150 |
reranked_chunks, similarities = rerank(query, merged_chunks)
|
|
|
156 |
|
157 |
iface = gr.Interface(
|
158 |
fn=process_query,
|
159 |
+
inputs=gr.Textbox(placeholder="Enter your financial question"),
|
160 |
outputs="text",
|
161 |
title="Financial Document Q&A Chatbot",
|
162 |
+
description="Ask questions about the preloaded financial documents."
|
163 |
)
|
164 |
|
165 |
iface.launch()
|
166 |
+
accelerator.free_memory()
|