Niveytha27 commited on
Commit
55a7046
·
verified ·
1 Parent(s): 5e75e9b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -4
app.py CHANGED
@@ -20,7 +20,6 @@ nltk.download('punkt_tab')
20
  index = None
21
  chunks = None
22
  embedding_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
23
- rerank_model = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-12-v2')
24
  generator = None
25
 
26
  # --- PDF Processing and Embedding ---
@@ -123,7 +122,7 @@ def rerank(query, results, keyword_weight=0.3, cross_encoder_weight=0.7):
123
  keyword_scores = [score_chunk_keywords(chunk) for chunk in results]
124
 
125
  # Cross-encoder scoring
126
- rerank_model = CrossEncoder(rerank_model)
127
  query_results = [[query, f"Document: {result['document_id']}, Section: {result['section_header']}, Text: {result['text']}"] for result in results]
128
  cross_encoder_scores = rerank_model.predict(query_results)
129
 
@@ -145,8 +144,6 @@ def merge_chunks(retrieved_chunks):
145
  # --- Confidence Calculation ---
146
  def calculate_confidence(query, context, answer):
147
  """Calculates confidence score based on question-context and context-answer similarity."""
148
- embedding_model = SentenceTransformer(embedding_model)
149
-
150
  query_embedding = embedding_model.encode([query], convert_to_numpy=True)
151
  context_embedding = embedding_model.encode([context], convert_to_numpy=True)
152
  answer_embedding = embedding_model.encode([answer], convert_to_numpy=True)
 
20
  index = None
21
  chunks = None
22
  embedding_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
 
23
  generator = None
24
 
25
  # --- PDF Processing and Embedding ---
 
122
  keyword_scores = [score_chunk_keywords(chunk) for chunk in results]
123
 
124
  # Cross-encoder scoring
125
+ rerank_model = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-12-v2')
126
  query_results = [[query, f"Document: {result['document_id']}, Section: {result['section_header']}, Text: {result['text']}"] for result in results]
127
  cross_encoder_scores = rerank_model.predict(query_results)
128
 
 
144
  # --- Confidence Calculation ---
145
  def calculate_confidence(query, context, answer):
146
  """Calculates confidence score based on question-context and context-answer similarity."""
 
 
147
  query_embedding = embedding_model.encode([query], convert_to_numpy=True)
148
  context_embedding = embedding_model.encode([context], convert_to_numpy=True)
149
  answer_embedding = embedding_model.encode([answer], convert_to_numpy=True)