Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import io
|
3 |
+
import re
|
4 |
+
import numpy as np
|
5 |
+
import faiss
|
6 |
+
import torch
|
7 |
+
import streamlit as st
|
8 |
+
from pypdf import PdfReader
|
9 |
+
from rank_bm25 import BM25Okapi
|
10 |
+
from sentence_transformers import SentenceTransformer
|
11 |
+
from accelerate import Accelerator
|
12 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
13 |
+
from bert_score import score
|
14 |
+
|
15 |
+
st.title("Financial Document Q&A Chatbot")
|
16 |
+
|
17 |
+
@st.cache_resource
|
18 |
+
def load_models():
|
19 |
+
embedding_model = SentenceTransformer("BAAI/bge-large-en")
|
20 |
+
accelerator = Accelerator()
|
21 |
+
MODEL_NAME = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
|
22 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
23 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, device_map="auto")
|
24 |
+
model = accelerator.prepare(model)
|
25 |
+
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
26 |
+
return embedding_model, tokenizer, generator, accelerator
|
27 |
+
|
28 |
+
embedding_model, tokenizer, generator, accelerator = load_models()
|
29 |
+
|
30 |
+
def download_pdf(url):
|
31 |
+
try:
|
32 |
+
response = requests.get(url, stream=True)
|
33 |
+
response.raise_for_status()
|
34 |
+
return response.content
|
35 |
+
except requests.exceptions.RequestException as e:
|
36 |
+
st.error(f"Error downloading PDF from {url}: {e}")
|
37 |
+
return None
|
38 |
+
|
39 |
+
def extract_text_from_pdf(pdf_bytes):
|
40 |
+
try:
|
41 |
+
pdf_file = io.BytesIO(pdf_bytes)
|
42 |
+
reader = PdfReader(pdf_file)
|
43 |
+
text = ""
|
44 |
+
for page in reader.pages:
|
45 |
+
text += page.extract_text() or ""
|
46 |
+
return text
|
47 |
+
except Exception as e:
|
48 |
+
st.error(f"Error extracting text from PDF: {e}")
|
49 |
+
return None
|
50 |
+
|
51 |
+
def preprocess_text(text):
|
52 |
+
"""Cleans text while retaining financial symbols and ensuring proper formatting."""
|
53 |
+
if not text:
|
54 |
+
return ""
|
55 |
+
|
56 |
+
# Define allowed financial symbols
|
57 |
+
financial_symbols = r"\$\€\₹\£\¥\₩\₽\₮\₦\₲"
|
58 |
+
|
59 |
+
# Allow numbers, letters, spaces, financial symbols, common punctuation (.,%/-)
|
60 |
+
text = re.sub(fr"[^\w\s{financial_symbols}.,%/₹$€¥£-]", "", text)
|
61 |
+
|
62 |
+
# Normalize spaces
|
63 |
+
text = re.sub(r'\s+', ' ', text).strip()
|
64 |
+
|
65 |
+
return text
|
66 |
+
|
67 |
+
@st.cache_resource
|
68 |
+
def load_and_index_data(pdf_urls):
|
69 |
+
all_data = []
|
70 |
+
for url in pdf_urls:
|
71 |
+
pdf_bytes = download_pdf(url)
|
72 |
+
if pdf_bytes:
|
73 |
+
text = extract_text_from_pdf(pdf_bytes)
|
74 |
+
if text:
|
75 |
+
preprocessed_text = preprocess_text(text)
|
76 |
+
all_data.append(preprocessed_text)
|
77 |
+
|
78 |
+
def chunk_text(text, chunk_size=700, overlap_size=150):
|
79 |
+
chunks = []
|
80 |
+
start = 0
|
81 |
+
text_length = len(text)
|
82 |
+
while start < text_length:
|
83 |
+
end = min(start + chunk_size, text_length)
|
84 |
+
if end < text_length and text[end].isalnum():
|
85 |
+
last_space = text.rfind(" ", start, end)
|
86 |
+
if last_space != -1:
|
87 |
+
end = last_space
|
88 |
+
chunk = text[start:end].strip()
|
89 |
+
if chunk:
|
90 |
+
chunks.append(chunk)
|
91 |
+
if end == text_length:
|
92 |
+
break
|
93 |
+
overlap_start = max(0, end - overlap_size)
|
94 |
+
if overlap_start < end:
|
95 |
+
last_overlap_space = text.rfind(" ", 0, overlap_start)
|
96 |
+
if last_overlap_space != -1 and last_overlap_space > start:
|
97 |
+
start = last_overlap_space + 1
|
98 |
+
else:
|
99 |
+
start = end
|
100 |
+
else:
|
101 |
+
start = end
|
102 |
+
return chunks
|
103 |
+
|
104 |
+
chunks = []
|
105 |
+
for data in all_data:
|
106 |
+
chunks.extend(chunk_text(data))
|
107 |
+
|
108 |
+
embeddings = embedding_model.encode(chunks)
|
109 |
+
index = faiss.IndexFlatL2(embeddings.shape[1])
|
110 |
+
index.add(embeddings)
|
111 |
+
return index, chunks
|
112 |
+
|
113 |
+
def bm25_retrieval(query, documents, top_k=3):
|
114 |
+
tokenized_docs = [doc.split() for doc in documents]
|
115 |
+
bm25 = BM25Okapi(tokenized_docs)
|
116 |
+
return [documents[i] for i in np.argsort(bm25.get_scores(query.split()))[::-1][:top_k]]
|
117 |
+
|
118 |
+
def adaptive_retrieval(query, index, chunks, top_k=3, bm25_weight=0.5):
|
119 |
+
query_embedding = embedding_model.encode([query], convert_to_numpy=True, dtype=np.float16)
|
120 |
+
_, indices = index.search(query_embedding, top_k)
|
121 |
+
vector_results = [chunks[i] for i in indices[0]]
|
122 |
+
bm25_results = bm25_retrieval(query, chunks, top_k)
|
123 |
+
return list(set(vector_results + bm25_results))
|
124 |
+
|
125 |
+
def rerank(query, results):
|
126 |
+
query_embedding = embedding_model.encode([query], convert_to_numpy=True)
|
127 |
+
result_embeddings = embedding_model.encode(results, convert_to_numpy=True)
|
128 |
+
similarities = np.dot(result_embeddings, query_embedding.T).flatten()
|
129 |
+
return [results[i] for i in np.argsort(similarities)[::-1]], similarities
|
130 |
+
|
131 |
+
def merge_chunks(retrieved_chunks, overlap_size=100):
|
132 |
+
merged_chunks = []
|
133 |
+
buffer = retrieved_chunks[0] if retrieved_chunks else ""
|
134 |
+
for i in range(1, len(retrieved_chunks)):
|
135 |
+
chunk = retrieved_chunks[i]
|
136 |
+
overlap_start = buffer[-overlap_size:]
|
137 |
+
overlap_index = chunk.find(overlap_start)
|
138 |
+
if overlap_index != -1:
|
139 |
+
buffer += chunk[overlap_index + overlap_size:]
|
140 |
+
else:
|
141 |
+
merged_chunks.append(buffer)
|
142 |
+
buffer = chunk
|
143 |
+
if buffer:
|
144 |
+
merged_chunks.append(buffer)
|
145 |
+
return merged_chunks
|
146 |
+
|
147 |
+
def calculate_confidence(query, answer):
|
148 |
+
P, R, F1 = score([answer], [query], lang="en", verbose=False)
|
149 |
+
return F1.item()
|
150 |
+
|
151 |
+
def generate_response(query, context):
|
152 |
+
prompt = f"""Your task is to analyze the given Context and answer the Question concisely in plain English.
|
153 |
+
**Guidelines:**
|
154 |
+
- Do NOT include </think> tag, just provide the final answer only.
|
155 |
+
- Provide a direct, factual answer based strictly on the Context.
|
156 |
+
- Avoid generating Python code, solutions, or any irrelevant information.
|
157 |
+
Context: {context}
|
158 |
+
Question: {query}
|
159 |
+
Answer:
|
160 |
+
"""
|
161 |
+
response = generator(prompt, max_new_tokens=150, num_return_sequences=1)[0]['generated_text']
|
162 |
+
answer = response.split("Answer:")[1].strip()
|
163 |
+
return answer
|
164 |
+
|
165 |
+
if "messages" not in st.session_state:
|
166 |
+
st.session_state.messages = []
|
167 |
+
|
168 |
+
for message in st.session_state.messages:
|
169 |
+
with st.chat_message(message["role"]):
|
170 |
+
st.markdown(message["content"])
|
171 |
+
|
172 |
+
pdf_urls = st.text_area("Enter PDF URLs (one per line):", "")
|
173 |
+
pdf_urls = [url.strip() for url in pdf_urls.split("\n") if url.strip()]
|
174 |
+
|
175 |
+
if st.button("Load and Index PDFs"):
|
176 |
+
with st.spinner("Loading and indexing PDFs..."):
|
177 |
+
index, chunks = load_and_index_data(pdf_urls)
|
178 |
+
st.session_state.index = index
|
179 |
+
st.session_state.chunks = chunks
|
180 |
+
st.success("PDFs loaded and indexed successfully.")
|
181 |
+
|
182 |
+
if "index" in st.session_state and "chunks" in st.session_state:
|
183 |
+
if prompt := st.chat_input("Enter your financial question:"):
|
184 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
185 |
+
with st.chat_message("user"):
|
186 |
+
st.markdown(prompt)
|
187 |
+
|
188 |
+
with st.chat_message("assistant"):
|
189 |
+
message_placeholder = st.empty()
|
190 |
+
retrieved_chunks = adaptive_retrieval(prompt, st.session_state.index, st.session_state.chunks)
|
191 |
+
merged_chunks = merge_chunks(retrieved_chunks, 150)
|
192 |
+
reranked_chunks, similarities = rerank(prompt, merged_chunks)
|
193 |
+
context = " ".join(reranked_chunks[:3])
|
194 |
+
answer = generate_response(prompt, context)
|
195 |
+
confidence = calculate_confidence(prompt, answer)
|
196 |
+
full_response = f"{answer}\n\nConfidence: {confidence:.2f}"
|
197 |
+
message_placeholder.markdown(full_response)
|
198 |
+
st.session_state.messages.append({"role": "assistant", "content": full_response})
|
199 |
+
|
200 |
+
accelerator.free_memory()
|