Niveytha27 commited on
Commit
b775960
·
verified ·
1 Parent(s): d1b3bd4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -31,7 +31,7 @@ def download_pdf(url):
31
  def custom_chunking(text, delimiter="\n\n"):
32
  """Splits text based on a specified delimiter."""
33
  return text.split(delimiter)
34
-
35
  def extract_text_from_pdf(pdf_bytes, document_id):
36
  """Extracts text from a PDF, page by page, and then chunks each page."""
37
  pdf_file = io.BytesIO(pdf_bytes)
@@ -147,7 +147,7 @@ def calculate_confidence(query, context, answer):
147
  query_embedding = embedding_model.encode([query], convert_to_numpy=True)
148
  context_embedding = embedding_model.encode([context], convert_to_numpy=True)
149
  answer_embedding = embedding_model.encode([answer], convert_to_numpy=True)
150
-
151
  query_context_similarity = np.dot(query_embedding, context_embedding.T).item()
152
  context_answer_similarity = np.dot(context_embedding, answer_embedding.T).item()
153
  confidence = (query_context_similarity + context_answer_similarity) / 2.0 # Equal weights
@@ -161,7 +161,7 @@ def generate_response(query, context):
161
  - JUST PROVIDE ONLY THE ANSWER.
162
  - Provide a elaborate, factual answer based strictly on the Context.
163
  - Avoid generating Python code, solutions, or any irrelevant information.
164
- Context: {context}
165
  Question: {query}
166
  Answer:"""
167
  response = generator(prompt, max_new_tokens=500, num_return_sequences=1)[0]['generated_text']
@@ -256,4 +256,4 @@ with gr.Blocks() as demo:
256
 
257
  iface.render()
258
 
259
- demo.launch()
 
31
  def custom_chunking(text, delimiter="\n\n"):
32
  """Splits text based on a specified delimiter."""
33
  return text.split(delimiter)
34
+
35
  def extract_text_from_pdf(pdf_bytes, document_id):
36
  """Extracts text from a PDF, page by page, and then chunks each page."""
37
  pdf_file = io.BytesIO(pdf_bytes)
 
147
  query_embedding = embedding_model.encode([query], convert_to_numpy=True)
148
  context_embedding = embedding_model.encode([context], convert_to_numpy=True)
149
  answer_embedding = embedding_model.encode([answer], convert_to_numpy=True)
150
+
151
  query_context_similarity = np.dot(query_embedding, context_embedding.T).item()
152
  context_answer_similarity = np.dot(context_embedding, answer_embedding.T).item()
153
  confidence = (query_context_similarity + context_answer_similarity) / 2.0 # Equal weights
 
161
  - JUST PROVIDE ONLY THE ANSWER.
162
  - Provide a elaborate, factual answer based strictly on the Context.
163
  - Avoid generating Python code, solutions, or any irrelevant information.
164
+ Context: {context}
165
  Question: {query}
166
  Answer:"""
167
  response = generator(prompt, max_new_tokens=500, num_return_sequences=1)[0]['generated_text']
 
256
 
257
  iface.render()
258
 
259
+ demo.launch()