import requests import io import re import numpy as np import faiss import time import gradio as gr from pypdf import PdfReader from rank_bm25 import BM25Okapi from sentence_transformers import SentenceTransformer from accelerate import Accelerator from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline def chunk_text(text, chunk_size=700, overlap_size=150): """Chunks text without breaking words in the middle (corrected overlap).""" chunks = [] start = 0 text_length = len(text) while start < text_length: end = min(start + chunk_size, text_length) # Ensure we do not split words if end < text_length and text[end].isalnum(): last_space = text.rfind(" ", start, end) # Find last space within the chunk if last_space != -1: # If a space is found, adjust the end end = last_space chunk = text[start:end].strip() if chunk: # Avoid empty chunks chunks.append(chunk) if end == text_length: break # Corrected overlap calculation overlap_start = max(0, end - overlap_size) if overlap_start < end: # Prevent infinite loop if overlap_start is equal to end. last_overlap_space = text.rfind(" ", 0, overlap_start) if last_overlap_space != -1 and last_overlap_space > start: start = last_overlap_space + 1 else: start = end # If no space found, start at the last end. else: start = end return chunks chunks = [] for data in all_data: chunks.extend(chunk_text(data)) embedding_model = SentenceTransformer("BAAI/bge-large-en") # embedding_model = SentenceTransformer('multi-qa-mpnet-base-dot-v1') embeddings = embedding_model.encode(chunks) index = faiss.IndexFlatL2(embeddings.shape[1]) index.add(embeddings) def bm25_retrieval(query, documents, top_k=3): tokenized_docs = [doc.split() for doc in documents] bm25 = BM25Okapi(tokenized_docs) return [documents[i] for i in np.argsort(bm25.get_scores(query.split()))[::-1][:top_k]] def adaptive_retrieval(query, index, chunks, top_k=3, bm25_weight=0.5): query_embedding = embedding_model.encode([query], convert_to_numpy=True, dtype=np.float16) _, indices = index.search(query_embedding, top_k) vector_results = [chunks[i] for i in indices[0]] bm25_results = bm25_retrieval(query, chunks, top_k) return list(set(vector_results + bm25_results)) def rerank(query, results): query_embedding = embedding_model.encode([query], convert_to_numpy=True) result_embeddings = embedding_model.encode(results, convert_to_numpy=True) similarities = np.dot(result_embeddings, query_embedding.T).flatten() return [results[i] for i in np.argsort(similarities)[::-1]], similarities #Chunk merging. def merge_chunks(retrieved_chunks, overlap_size=100): """Merges overlapping chunks properly by detecting the actual overlap.""" merged_chunks = [] buffer = retrieved_chunks[0] if retrieved_chunks else "" for i in range(1, len(retrieved_chunks)): chunk = retrieved_chunks[i] # Find actual overlap overlap_start = buffer[-overlap_size:] # Get the last `overlap_size` chars of the previous chunk overlap_index = chunk.find(overlap_start) # Find where this part appears in the new chunk if overlap_index != -1: # Merge only the non-overlapping part buffer += chunk[overlap_index + overlap_size:] else: # Store completed merged chunk and start a new one merged_chunks.append(buffer) buffer = chunk if buffer: merged_chunks.append(buffer) return merged_chunks # def calculate_confidence(query, context, similarities): # return np.mean(similarities) # Averaged similarity scores def calculate_confidence(query, answer): P, R, F1 = score([answer], [query], lang="en", verbose=False) return F1.item() # Load SLM accelerator = Accelerator() accelerator.free_memory() MODEL_NAME = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B" tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, device_map="auto", cache_dir="./my_models") model = accelerator.prepare(model) generator = pipeline("text-generation", model=model, tokenizer=tokenizer) def generate_response(query, context): prompt = f"""Your task is to analyze the given Context and answer the Question concisely in plain English. **Guidelines:** - Do NOT include tag, just provide the final answer only. - Provide a direct, factual answer based strictly on the Context. - Avoid generating Python code, solutions, or any irrelevant information. Context: {context} Question: {query} Answer: """ response = generator(prompt, max_new_tokens=150, num_return_sequences=1)[0]['generated_text'] answer = response.split("Answer:")[1].strip() return answer def process_query(pdf_urls_text, query): pdf_urls = [url.strip() for url in pdf_urls_text.split("\n") if url.strip()] if not pdf_urls: return "Please enter at least one PDF URL." index, chunks = load_and_index_data(pdf_urls) retrieved_chunks = adaptive_retrieval(query, index, chunks) merged_chunks = merge_chunks(retrieved_chunks, 150) reranked_chunks, similarities = rerank(query, merged_chunks) context = " ".join(reranked_chunks[:3]) answer = generate_response(query, context) confidence = calculate_confidence(query, answer) full_response = f"{answer}\n\nConfidence: {confidence:.2f}" return full_response iface = gr.Interface( fn=process_query, inputs=[gr.Textbox(lines=3, placeholder="Enter PDF URLs (one per line)"), gr.Textbox(placeholder="Enter your financial question")], outputs="text", title="Financial Document Q&A Chatbot", description="Enter PDF URLs and your question to get answers from the documents." ) iface.launch() accelerator.free_memory()