|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from peft import PeftModel |
|
import torch |
|
import gradio as gr |
|
import spaces |
|
|
|
|
|
base_model_id = "unsloth/Meta-Llama-3.1-8B" |
|
lora_model_id = "Nlpeva/lora_model" |
|
|
|
try: |
|
model = AutoModelForCausalLM.from_pretrained( |
|
base_model_id, |
|
torch_dtype=torch.float16, |
|
device_map="auto" |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(base_model_id) |
|
model = PeftModel.from_pretrained(model, lora_model_id) |
|
print("Model and LoRA loaded successfully!") |
|
except Exception as e: |
|
print(f"Error loading model or LoRA: {e}") |
|
model = None |
|
tokenizer = None |
|
|
|
|
|
@spaces.GPU |
|
def generate_response(information, input_text): |
|
if model is None or tokenizer is None: |
|
return "Model not loaded. Please check the logs." |
|
|
|
prompt = f"Information: {information}\n\nInput: {input_text}\n\nResponse:" |
|
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device) |
|
|
|
try: |
|
with torch.no_grad(): |
|
output = model.generate( |
|
input_ids=input_ids, |
|
max_length=300, |
|
num_return_sequences=1, |
|
temperature=0.7, |
|
top_p=0.9, |
|
|
|
) |
|
generated_text = tokenizer.decode(output[0], skip_special_tokens=True) |
|
return generated_text.strip() |
|
except Exception as e: |
|
return f"Error during generation: {e}" |
|
|
|
|
|
iface = gr.Interface( |
|
fn=generate_response, |
|
inputs=[ |
|
gr.Textbox(label="Information", placeholder="Provide any relevant context or information here."), |
|
gr.Textbox(label="Input", placeholder="Enter your query or the text you want the model to process.") |
|
], |
|
outputs=gr.Textbox(label="Output"), |
|
title="Llama-3 with Custom LoRA", |
|
description="Enter information and an input, and the model will generate a response based on both." |
|
) |
|
|
|
iface.launch() |