Spaces:
Runtime error
Runtime error
asd
Browse files- app.py +8 -15
- requirements.txt +3 -1
app.py
CHANGED
|
@@ -52,8 +52,9 @@
|
|
| 52 |
# import dependencies
|
| 53 |
import gradio as gr
|
| 54 |
from openai import OpenAI
|
| 55 |
-
import
|
| 56 |
-
|
|
|
|
| 57 |
|
| 58 |
# define the openai key
|
| 59 |
api_key = "sk-proj-UCoZZMs4MyfyHwXdHjT8T3BlbkFJjYkSZyPfIPNqXfXwoekm"
|
|
@@ -64,24 +65,16 @@ client = OpenAI(api_key = api_key)
|
|
| 64 |
# finetuned model instance
|
| 65 |
finetuned_model = "ft:gpt-3.5-turbo-0125:personal::9qGC8cwZ"
|
| 66 |
|
| 67 |
-
# Load model
|
| 68 |
model_name = "tommyliphys/ai-detector-distilbert"
|
| 69 |
-
|
|
|
|
| 70 |
|
| 71 |
-
|
| 72 |
-
tf_model = TFAutoModelForSequenceClassification.from_pretrained(model_name, from_tf=True)
|
| 73 |
-
|
| 74 |
-
# Convert to PyTorch model
|
| 75 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_name, from_tf=True)
|
| 76 |
|
| 77 |
# Define the function to get predictions
|
| 78 |
def get_prediction(text):
|
| 79 |
-
|
| 80 |
-
with torch.no_grad():
|
| 81 |
-
outputs = model(**inputs)
|
| 82 |
-
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
| 83 |
-
ai_probability = probabilities[0][1].item() # Assuming 1 is the index for "AI"
|
| 84 |
-
return {"label": "AI" if ai_probability > 0.5 else "Human", "score": ai_probability}
|
| 85 |
|
| 86 |
# function to humanize the text
|
| 87 |
def humanize_text(AI_text):
|
|
|
|
| 52 |
# import dependencies
|
| 53 |
import gradio as gr
|
| 54 |
from openai import OpenAI
|
| 55 |
+
import os
|
| 56 |
+
import re
|
| 57 |
+
from transformers import pipeline, DistilBertForSequenceClassification, DistilBertTokenizerFast
|
| 58 |
|
| 59 |
# define the openai key
|
| 60 |
api_key = "sk-proj-UCoZZMs4MyfyHwXdHjT8T3BlbkFJjYkSZyPfIPNqXfXwoekm"
|
|
|
|
| 65 |
# finetuned model instance
|
| 66 |
finetuned_model = "ft:gpt-3.5-turbo-0125:personal::9qGC8cwZ"
|
| 67 |
|
| 68 |
+
# Load the AI detection model
|
| 69 |
model_name = "tommyliphys/ai-detector-distilbert"
|
| 70 |
+
model = DistilBertForSequenceClassification.from_pretrained(model_name)
|
| 71 |
+
tokenizer = DistilBertTokenizerFast.from_pretrained(model_name)
|
| 72 |
|
| 73 |
+
pipe = pipeline("text-classification", model=model, tokenizer=tokenizer)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
# Define the function to get predictions
|
| 76 |
def get_prediction(text):
|
| 77 |
+
return pipe(text)[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
# function to humanize the text
|
| 80 |
def humanize_text(AI_text):
|
requirements.txt
CHANGED
|
@@ -1,3 +1,5 @@
|
|
| 1 |
openai
|
| 2 |
transformers
|
| 3 |
-
torch
|
|
|
|
|
|
|
|
|
| 1 |
openai
|
| 2 |
transformers
|
| 3 |
+
torch
|
| 4 |
+
tensorflow
|
| 5 |
+
tf-keras
|