File size: 34,178 Bytes
e7b9fb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
#!/usr/bin/env python3
"""
MagicArticulate API - Enhanced Version
支持用户上传的3D模型文件和多用户结果管理
"""

import os
import sys
import uuid
import json
import time
import shutil
import logging
import tempfile
import traceback
from pathlib import Path
from datetime import datetime
from typing import Dict, Any, List, Optional, Tuple

import torch
import trimesh
import numpy as np
from tqdm import tqdm

from accelerate import Accelerator
from accelerate.utils import set_seed, DistributedDataParallelKwargs

# 添加父目录到路径以正确导入模块
parent_dir = str(Path(__file__).parent.parent)
if parent_dir not in sys.path:
    sys.path.insert(0, parent_dir)

print(f"🔍 ARTICULATE_API DEBUG: Current working directory: {os.getcwd()}")
print(f"🔍 ARTICULATE_API DEBUG: Script file path: {__file__}")
print(f"🔍 ARTICULATE_API DEBUG: Parent directory: {parent_dir}")
print(f"🔍 ARTICULATE_API DEBUG: sys.path includes:")
for i, path in enumerate(sys.path[:10]):  # 只显示前10个避免太长
    print(f"  {i}: {path}")

# 检查目录结构
utils_path = os.path.join(parent_dir, 'utils')
skeleton_path = os.path.join(parent_dir, 'skeleton_models')
print(f"🔍 ARTICULATE_API DEBUG: utils path exists: {os.path.exists(utils_path)}")
print(f"🔍 ARTICULATE_API DEBUG: skeleton_models path exists: {os.path.exists(skeleton_path)}")

if os.path.exists(utils_path):
    print(f"🔍 ARTICULATE_API DEBUG: utils contents: {os.listdir(utils_path)}")

from skeleton_models.skeletongen import SkeletonGPT
from utils.mesh_to_pc import MeshProcessor
from utils.save_utils import (
    save_mesh, pred_joints_and_bones, save_skeleton_to_txt, 
    save_args, remove_duplicate_joints, save_skeleton_obj, 
    render_mesh_with_skeleton
)

# 配置日志
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

class ModelValidator:
    """3D模型验证和修复类"""
    
    SUPPORTED_FORMATS = {'.obj', '.glb', '.gltf', '.ply', '.stl', '.fbx', '.dae'}
    MAX_VERTICES = 100000  # 最大顶点数
    MIN_VERTICES = 100     # 最小顶点数
    MAX_FILE_SIZE_MB = 100 # 最大文件大小
    
    @staticmethod
    def validate_file(file_path: str) -> Tuple[bool, str, Dict[str, Any]]:
        """
        验证3D模型文件
        
        Returns:
            (is_valid, error_message, model_info)
        """
        try:
            # 检查文件是否存在
            if not os.path.exists(file_path):
                return False, "文件不存在", {}
            
            # 检查文件大小
            file_size_mb = os.path.getsize(file_path) / (1024 * 1024)
            if file_size_mb > ModelValidator.MAX_FILE_SIZE_MB:
                return False, f"文件过大: {file_size_mb:.1f}MB > {ModelValidator.MAX_FILE_SIZE_MB}MB", {}
            
            # 检查文件格式
            file_ext = Path(file_path).suffix.lower()
            if file_ext not in ModelValidator.SUPPORTED_FORMATS:
                return False, f"不支持的文件格式: {file_ext}", {}
            
            # 尝试加载模型
            mesh = trimesh.load(file_path, force='mesh')
            
            # 检查是否为有效网格
            if not hasattr(mesh, 'vertices') or not hasattr(mesh, 'faces'):
                return False, "文件不包含有效的网格数据", {}
            
            # 检查顶点数量
            vertex_count = len(mesh.vertices)
            if vertex_count < ModelValidator.MIN_VERTICES:
                return False, f"顶点数量过少: {vertex_count} < {ModelValidator.MIN_VERTICES}", {}
            if vertex_count > ModelValidator.MAX_VERTICES:
                return False, f"顶点数量过多: {vertex_count} > {ModelValidator.MAX_VERTICES}", {}
            
            # 收集模型信息
            model_info = {
                'file_name': os.path.basename(file_path),
                'file_size_mb': file_size_mb,
                'format': file_ext,
                'vertex_count': vertex_count,
                'face_count': len(mesh.faces) if hasattr(mesh, 'faces') else 0,
                'bounds': mesh.bounds.tolist() if hasattr(mesh, 'bounds') else None,
                'is_watertight': mesh.is_watertight if hasattr(mesh, 'is_watertight') else False,
                'volume': float(mesh.volume) if hasattr(mesh, 'volume') else 0.0,
                'area': float(mesh.area) if hasattr(mesh, 'area') else 0.0,
            }
            
            return True, "验证通过", model_info
            
        except Exception as e:
            return False, f"模型验证失败: {str(e)}", {}
    
    @staticmethod
    def auto_repair_mesh(mesh: trimesh.Trimesh) -> Tuple[trimesh.Trimesh, List[str]]:
        """
        自动修复网格问题
        
        Returns:
            (repaired_mesh, repair_log)
        """
        repair_log = []
        
        try:
            # 移除重复顶点
            if mesh.is_volume:
                original_vertices = len(mesh.vertices)
                mesh.merge_vertices()
                if len(mesh.vertices) < original_vertices:
                    repair_log.append(f"移除了 {original_vertices - len(mesh.vertices)} 个重复顶点")
            
            # 修复法向量
            if not hasattr(mesh, 'vertex_normals') or mesh.vertex_normals is None:
                mesh.fix_normals()
                repair_log.append("修复了顶点法向量")
            
            # 移除退化面
            original_faces = len(mesh.faces)
            mesh.remove_degenerate_faces()
            if len(mesh.faces) < original_faces:
                repair_log.append(f"移除了 {original_faces - len(mesh.faces)} 个退化面")
            
            # 填充孔洞(如果需要)
            if not mesh.is_watertight and hasattr(mesh, 'fill_holes'):
                try:
                    mesh.fill_holes()
                    repair_log.append("填充了网格孔洞")
                except:
                    repair_log.append("尝试填充孔洞失败,但继续处理")
            
            return mesh, repair_log
            
        except Exception as e:
            logger.warning(f"网格修复过程中出现错误: {str(e)}")
            return mesh, repair_log + [f"修复过程出错: {str(e)}"]

class ModelPreprocessor:
    """模型预处理类"""
    
    @staticmethod
    def convert_format(input_path: str, output_format: str = '.obj') -> str:
        """
        转换模型格式
        
        Args:
            input_path: 输入文件路径
            output_format: 输出格式 (默认为.obj)
            
        Returns:
            输出文件路径
        """
        try:
            mesh = trimesh.load(input_path, force='mesh')
            
            # 生成输出路径
            base_name = os.path.splitext(os.path.basename(input_path))[0]
            output_path = os.path.join(
                os.path.dirname(input_path), 
                f"{base_name}_converted{output_format}"
            )
            
            # 导出为指定格式
            mesh.export(output_path)
            
            logger.info(f"格式转换完成: {input_path} -> {output_path}")
            return output_path
            
        except Exception as e:
            logger.error(f"格式转换失败: {str(e)}")
            raise
    
    @staticmethod
    def simplify_mesh(mesh: trimesh.Trimesh, target_faces: int = 5000) -> trimesh.Trimesh:
        """
        简化网格
        
        Args:
            mesh: 输入网格
            target_faces: 目标面数
            
        Returns:
            简化后的网格
        """
        try:
            if len(mesh.faces) <= target_faces:
                return mesh
            
            # 使用quadric decimation进行简化
            simplified = mesh.simplify_quadratic_decimation(target_faces)
            
            logger.info(f"网格简化: {len(mesh.faces)} -> {len(simplified.faces)} 面")
            return simplified
            
        except Exception as e:
            logger.warning(f"网格简化失败: {str(e)}, 使用原始网格")
            return mesh
    
    @staticmethod
    def normalize_mesh(mesh: trimesh.Trimesh, scale_factor: float = 0.95) -> Tuple[trimesh.Trimesh, Dict[str, Any]]:
        """
        标准化网格到标准坐标空间
        
        Args:
            mesh: 输入网格
            scale_factor: 缩放因子
            
        Returns:
            (normalized_mesh, transform_info)
        """
        try:
            # 计算边界框
            bounds = mesh.bounds
            center = (bounds[0] + bounds[1]) / 2
            size = bounds[1] - bounds[0]
            max_size = size.max()
            
            # 计算变换参数
            scale = (2.0 * scale_factor) / max_size
            translation = -center
            
            # 应用变换
            vertices = mesh.vertices.copy()
            vertices = (vertices + translation) * scale
            
            # 创建新网格
            normalized_mesh = trimesh.Trimesh(vertices=vertices, faces=mesh.faces)
            
            # 记录变换信息
            transform_info = {
                'original_center': center.tolist(),
                'original_size': size.tolist(),
                'scale': float(scale),
                'translation': translation.tolist()
            }
            
            logger.info(f"网格标准化完成: scale={scale:.4f}")
            return normalized_mesh, transform_info
            
        except Exception as e:
            logger.error(f"网格标准化失败: {str(e)}")
            raise

class UserSessionManager:
    """用户会话管理类"""
    
    def __init__(self, base_dir: str = "user_sessions"):
        self.base_dir = Path(base_dir)
        self.base_dir.mkdir(exist_ok=True)
        
        # 元数据文件
        self.metadata_file = self.base_dir / "sessions_metadata.json"
        self.load_metadata()
    
    def load_metadata(self):
        """加载会话元数据"""
        if self.metadata_file.exists():
            with open(self.metadata_file, 'r', encoding='utf-8') as f:
                self.sessions = json.load(f)
        else:
            self.sessions = {}
    
    def save_metadata(self):
        """保存会话元数据"""
        with open(self.metadata_file, 'w', encoding='utf-8') as f:
            json.dump(self.sessions, f, indent=2, ensure_ascii=False)
    
    def create_session(self, user_id: Optional[str] = None) -> str:
        """
        创建新的用户会话
        
        Args:
            user_id: 用户ID(可选)
            
        Returns:
            session_id
        """
        session_id = str(uuid.uuid4())
        session_dir = self.base_dir / session_id
        session_dir.mkdir(exist_ok=True)
        
        # 创建子目录
        (session_dir / "uploads").mkdir(exist_ok=True)
        (session_dir / "outputs").mkdir(exist_ok=True)
        (session_dir / "temp").mkdir(exist_ok=True)
        
        # 记录会话信息
        self.sessions[session_id] = {
            'user_id': user_id,
            'created_at': datetime.now().isoformat(),
            'status': 'active',
            'processed_models': [],
            'last_activity': datetime.now().isoformat()
        }
        
        self.save_metadata()
        logger.info(f"创建新会话: {session_id}")
        return session_id
    
    def get_session_dir(self, session_id: str) -> Path:
        """获取会话目录"""
        session_dir = self.base_dir / session_id
        if not session_dir.exists():
            raise ValueError(f"会话不存在: {session_id}")
        return session_dir
    
    def update_activity(self, session_id: str):
        """更新会话活动时间"""
        if session_id in self.sessions:
            self.sessions[session_id]['last_activity'] = datetime.now().isoformat()
            self.save_metadata()
    
    def add_processed_model(self, session_id: str, model_info: Dict[str, Any]):
        """添加已处理模型记录"""
        if session_id in self.sessions:
            self.sessions[session_id]['processed_models'].append(model_info)
            self.update_activity(session_id)
    
    def cleanup_old_sessions(self, max_age_days: int = 7):
        """清理旧会话"""
        cutoff_time = datetime.now().timestamp() - (max_age_days * 24 * 3600)
        
        sessions_to_remove = []
        for session_id, session_info in self.sessions.items():
            last_activity = datetime.fromisoformat(session_info['last_activity'])
            if last_activity.timestamp() < cutoff_time:
                sessions_to_remove.append(session_id)
        
        for session_id in sessions_to_remove:
            try:
                session_dir = self.base_dir / session_id
                if session_dir.exists():
                    shutil.rmtree(session_dir)
                del self.sessions[session_id]
                logger.info(f"清理旧会话: {session_id}")
            except Exception as e:
                logger.error(f"清理会话失败 {session_id}: {str(e)}")
        
        if sessions_to_remove:
            self.save_metadata()

class MagicArticulateAPI:
    """MagicArticulate API主类"""
    
    def __init__(self, 
                 model_weights_path: Optional[str] = None,
                 device: str = "auto",
                 session_base_dir: str = "user_sessions"):
        
        self.device = self._setup_device(device)
        self.model = None
        self.accelerator = None
        self.model_weights_path = model_weights_path
        
        # 初始化会话管理器
        self.session_manager = UserSessionManager(session_base_dir)
        
        # 默认处理参数 - 匹配原始demo.py设置
        self.default_args = {
            'input_pc_num': 8192,
            'num_beams': 1,
            'n_discrete_size': 128,
            'n_max_bones': 100,
            'pad_id': -1,
            'precision': 'fp16',
            'batchsize_per_gpu': 1,
            'apply_marching_cubes': False,
            'octree_depth': 7,
            'hier_order': False,  # 匹配demo.py默认值
            'save_render': False,
            'llm': 'facebook/opt-350m'  # 匹配demo.py默认值
        }
        
        self.initialized = False
        logger.info("MagicArticulate API 初始化完成")
    
    def _setup_device(self, device: str) -> torch.device:
        """设置计算设备"""
        if device == "auto":
            if torch.cuda.is_available():
                device = "cuda"
                logger.info(f"使用GPU: {torch.cuda.get_device_name()}")
            else:
                device = "cpu"
                logger.info("使用CPU")
        
        return torch.device(device)
    
    def initialize_model(self) -> bool:
        """初始化模型"""
        try:
            if self.initialized:
                return True
            
            logger.info("正在初始化MagicArticulate模型...")
            
            # 设置加速器
            kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
            self.accelerator = Accelerator(
                kwargs_handlers=[kwargs],
                mixed_precision=self.default_args['precision'],
            )
            
            # 创建模型
            args = self._create_args_object()
            self.model = SkeletonGPT(args)
            
            if self.device.type == "cuda":
                self.model = self.model.cuda()
            
            # 加载预训练权重
            if self.model_weights_path and os.path.exists(self.model_weights_path):
                logger.info(f"加载模型权重: {self.model_weights_path}")
                pkg = torch.load(self.model_weights_path, map_location=self.device)
                self.model.load_state_dict(pkg["model"])
            else:
                error_msg = "预训练权重必须提供!当前使用随机初始化,结果将不准确。"
                logger.error(error_msg)
                # 不抛出错误,但给出强烈警告
                logger.error("⚠️ WARNING: 没有预训练权重,生成的骨骼结构将不准确!")
            
            self.model.eval()
            set_seed(0)
            
            # 准备模型
            if self.accelerator:
                self.model = self.accelerator.prepare(self.model)
            
            self.initialized = True
            logger.info("✅ 模型初始化成功")
            return True
            
        except Exception as e:
            logger.error(f"❌ 模型初始化失败: {str(e)}")
            logger.error(traceback.format_exc())
            return False
    
    def process_uploaded_model(self,
                             file_path: str,
                             session_id: Optional[str] = None,
                             user_prompt: str = "",
                             processing_options: Optional[Dict[str, Any]] = None) -> Dict[str, Any]:
        """
        处理用户上传的3D模型
        
        Args:
            file_path: 模型文件路径
            session_id: 会话ID(可选)
            user_prompt: 用户提示词
            processing_options: 处理选项
            
        Returns:
            处理结果字典
        """
        start_time = time.time()
        
        try:
            # 创建会话(如果未提供)
            if not session_id:
                session_id = self.session_manager.create_session()
            
            logger.info(f"开始处理模型: {file_path}, 会话: {session_id}")
            
            # 步骤1: 验证模型文件
            is_valid, error_msg, model_info = ModelValidator.validate_file(file_path)
            if not is_valid:
                return self._create_error_result(error_msg, session_id, start_time)
            
            logger.info(f"模型验证通过: {model_info}")
            
            # 步骤2: 复制文件到会话目录
            session_dir = self.session_manager.get_session_dir(session_id)
            uploaded_file = session_dir / "uploads" / os.path.basename(file_path)
            shutil.copy2(file_path, uploaded_file)
            
            # 步骤3: 预处理模型
            processed_mesh, preprocessing_log = self._preprocess_model(
                str(uploaded_file), 
                processing_options or {}
            )
            
            # 步骤4: 生成骨骼
            if not self.initialized:
                if not self.initialize_model():
                    return self._create_error_result("模型初始化失败", session_id, start_time)
            
            skeleton_result = self._generate_skeleton(
                processed_mesh, 
                model_info['file_name'],
                user_prompt
            )
            
            # 步骤5: 保存结果
            output_files = self._save_results(
                skeleton_result,
                processed_mesh,
                model_info,
                session_dir,
                user_prompt
            )
            
            # 步骤6: 记录处理结果
            processing_time = time.time() - start_time
            result = {
                'success': True,
                'session_id': session_id,
                'processing_time': processing_time,
                'model_info': model_info,
                'preprocessing_log': preprocessing_log,
                'skeleton_data': skeleton_result,
                'output_files': output_files,
                'user_prompt': user_prompt,
                'timestamp': datetime.now().isoformat()
            }
            
            # 更新会话记录
            self.session_manager.add_processed_model(session_id, {
                'file_name': model_info['file_name'],
                'processing_time': processing_time,
                'timestamp': datetime.now().isoformat(),
                'success': True
            })
            
            logger.info(f"✅ 模型处理完成,耗时: {processing_time:.2f}秒")
            return result
            
        except Exception as e:
            processing_time = time.time() - start_time
            error_msg = f"处理过程中发生错误: {str(e)}"
            logger.error(f"❌ {error_msg}")
            logger.error(traceback.format_exc())
            
            return self._create_error_result(error_msg, session_id, start_time)
    
    def _preprocess_model(self, file_path: str, options: Dict[str, Any]) -> Tuple[trimesh.Trimesh, List[str]]:
        """预处理模型"""
        preprocessing_log = []
        
        try:
            # 加载模型
            mesh = trimesh.load(file_path, force='mesh')
            preprocessing_log.append(f"加载模型: {len(mesh.vertices)} 顶点, {len(mesh.faces)} 面")
            
            # 自动修复
            if options.get('auto_repair', True):
                mesh, repair_log = ModelValidator.auto_repair_mesh(mesh)
                preprocessing_log.extend(repair_log)
            
            # 简化网格(如果需要)
            target_faces = options.get('target_faces', 10000)
            if len(mesh.faces) > target_faces:
                mesh = ModelPreprocessor.simplify_mesh(mesh, target_faces)
                preprocessing_log.append(f"简化网格到 {len(mesh.faces)} 面")
            
            # 标准化网格
            mesh, transform_info = ModelPreprocessor.normalize_mesh(mesh)
            preprocessing_log.append(f"标准化网格: scale={transform_info['scale']:.4f}")
            
            return mesh, preprocessing_log
            
        except Exception as e:
            error_msg = f"预处理失败: {str(e)}"
            logger.error(error_msg)
            raise RuntimeError(error_msg)
    
    def _generate_skeleton(self, mesh: trimesh.Trimesh, file_name: str, user_prompt: str) -> Dict[str, Any]:
        """生成骨骼结构"""
        try:
            # 转换网格为点云
            points_per_mesh = self.default_args['input_pc_num']
            apply_marching_cubes = self.default_args['apply_marching_cubes']
            octree_depth = self.default_args['octree_depth']
            
            point_clouds = MeshProcessor.convert_meshes_to_point_clouds(
                [mesh], 
                points_per_mesh, 
                apply_marching_cubes, 
                octree_depth
            )
            
            pc_data = point_clouds[0]
            
            # 按照原始demo进行标准化处理
            pc_coor = pc_data[:, :3]
            normals = pc_data[:, 3:]
            bounds = np.array([pc_coor.min(axis=0), pc_coor.max(axis=0)])
            
            # 存储变换信息以便后续去标准化
            trans = (bounds[0] + bounds[1])[None, :] / 2
            scale = ((bounds[1] - bounds[0]).max() + 1e-5)
            
            # 标准化坐标 - 与原始demo完全一致
            pc_coor = pc_coor - (bounds[0] + bounds[1])[None, :] / 2
            pc_coor = pc_coor / np.abs(pc_coor).max() * 0.9995
            
            # 组合坐标和法向量
            pc_coor = pc_coor.astype(np.float32)
            normals = normals.astype(np.float32)
            pc_normal_data = np.concatenate([pc_coor, normals], axis=-1, dtype=np.float16)
            
            # 准备输入数据
            pc_normal = torch.from_numpy(pc_normal_data).unsqueeze(0)
            if self.device.type == "cuda":
                pc_normal = pc_normal.cuda()
            
            # 获取mesh的变换信息
            mesh_bounds = np.array([mesh.vertices.min(axis=0), mesh.vertices.max(axis=0)])
            mesh_trans = (mesh_bounds[0] + mesh_bounds[1])[None, :] / 2
            mesh_scale = ((mesh_bounds[1] - mesh_bounds[0]).max() + 1e-5)
            
            batch_data = {
                'pc_normal': pc_normal,
                'file_name': [os.path.splitext(file_name)[0]],
                'trans': torch.from_numpy(mesh_trans).unsqueeze(0),
                'scale': torch.tensor(mesh_scale).unsqueeze(0),
                'vertices': torch.from_numpy(mesh.vertices).unsqueeze(0),
                'faces': torch.from_numpy(mesh.faces).unsqueeze(0)
            }
            
            # 生成骨骼
            with torch.no_grad():
                if self.accelerator:
                    with self.accelerator.autocast():
                        pred_bone_coords = self.model.generate(batch_data)
                else:
                    pred_bone_coords = self.model.generate(batch_data)
            
            # 处理输出 - 完全按照原始demo的流程
            trans = batch_data['trans'][0].cpu().numpy()
            scale = batch_data['scale'][0].cpu().numpy()
            vertices = batch_data['vertices'][0].cpu().numpy()
            faces = batch_data['faces'][0].cpu().numpy()
            
            skeleton = pred_bone_coords[0].cpu().numpy().squeeze()
            pred_joints, pred_bones = pred_joints_and_bones(skeleton)
            
            # 去重处理
            if self.default_args['hier_order']:
                pred_joints, pred_bones, pred_root_index = remove_duplicate_joints(
                    pred_joints, pred_bones, root_index=pred_bones[0][0]
                )
            else:
                pred_joints, pred_bones = remove_duplicate_joints(pred_joints, pred_bones)
                pred_root_index = 0
            
            # 重要:去标准化骨骼关节到原始模型坐标系
            pred_joints_denorm = pred_joints * scale + trans
            
            return {
                'joints': pred_joints_denorm.tolist(),  # 使用去标准化后的关节
                'joints_normalized': pred_joints.tolist(),  # 保留标准化的关节用于可视化
                'bones': pred_bones,
                'root_index': pred_root_index,
                'joint_count': len(pred_joints),
                'bone_count': len(pred_bones),
                'raw_skeleton': skeleton.tolist(),
                'user_prompt': user_prompt,
                'transform_info': {
                    'trans': trans.tolist(),
                    'scale': float(scale)
                }
            }
            
        except Exception as e:
            error_msg = f"骨骼生成失败: {str(e)}"
            logger.error(error_msg)
            raise RuntimeError(error_msg)
    
    def _save_results(self, 
                     skeleton_result: Dict[str, Any],
                     mesh: trimesh.Trimesh,
                     model_info: Dict[str, Any],
                     session_dir: Path,
                     user_prompt: str) -> Dict[str, str]:
        """保存处理结果"""
        try:
            output_dir = session_dir / "outputs"
            base_name = os.path.splitext(model_info['file_name'])[0]
            timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
            
            output_files = {}
            
            # 移除JSON格式输出以避免序列化问题
            
            # 保存骨骼OBJ - 使用去标准化后的关节
            obj_file = output_dir / f"{base_name}_{timestamp}_skeleton.obj"
            save_skeleton_obj(
                np.array(skeleton_result['joints']),
                skeleton_result['bones'],
                str(obj_file),
                skeleton_result.get('root_index', 0),
                use_cone=self.default_args['hier_order']
            )
            output_files['skeleton_obj'] = str(obj_file)
            
            # 保存骨骼TXT
            txt_file = output_dir / f"{base_name}_{timestamp}_rig.txt"
            save_skeleton_to_txt(
                np.array(skeleton_result['joints']),
                skeleton_result['bones'],
                skeleton_result.get('root_index', 0),
                self.default_args['hier_order'],
                mesh.vertices,
                str(txt_file)
            )
            output_files['skeleton_txt'] = str(txt_file)
            
            # 保存处理后的网格
            mesh_file = output_dir / f"{base_name}_{timestamp}_processed.obj"
            mesh.export(str(mesh_file))
            output_files['processed_mesh'] = str(mesh_file)
            
            # 保存处理报告(文本格式)
            report_file = output_dir / f"{base_name}_{timestamp}_report.txt"
            report_content = f"""MagicArticulate Processing Report
=====================================

File: {model_info['file_name']}
Processing Time: {datetime.now().isoformat()}
User Prompt: {user_prompt}

Model Information:
- Vertices: {model_info.get('vertex_count', 'N/A')}
- Faces: {model_info.get('face_count', 'N/A')}
- File Size: {model_info.get('file_size_mb', 'N/A')} MB
- Format: {model_info.get('format', 'N/A')}

Skeleton Results:
- Joints: {skeleton_result.get('joint_count', 'N/A')}
- Bones: {skeleton_result.get('bone_count', 'N/A')}
- Root Index: {skeleton_result.get('root_index', 'N/A')}

Generated Files:
- Skeleton OBJ: {base_name}_{timestamp}_skeleton.obj
- Skeleton TXT: {base_name}_{timestamp}_rig.txt
- Processed Mesh: {base_name}_{timestamp}_processed.obj
"""
            
            with open(report_file, 'w', encoding='utf-8') as f:
                f.write(report_content)
            output_files['report'] = str(report_file)
            
            logger.info(f"结果保存完成: {len(output_files)} 个文件")
            return output_files
            
        except Exception as e:
            error_msg = f"保存结果失败: {str(e)}"
            logger.error(error_msg)
            raise RuntimeError(error_msg)
    
    def _create_error_result(self, error_message: str, session_id: str, start_time: float) -> Dict[str, Any]:
        """创建错误结果"""
        processing_time = time.time() - start_time
        
        return {
            'success': False,
            'session_id': session_id,
            'error': error_message,
            'processing_time': processing_time,
            'timestamp': datetime.now().isoformat()
        }
    
    def _make_json_serializable(self, obj):
        """将对象转换为JSON可序列化格式"""
        if isinstance(obj, np.ndarray):
            return obj.tolist()
        elif isinstance(obj, np.integer):
            return int(obj)
        elif isinstance(obj, np.floating):
            return float(obj)
        elif isinstance(obj, dict):
            return {key: self._make_json_serializable(value) for key, value in obj.items()}
        elif isinstance(obj, list):
            return [self._make_json_serializable(item) for item in obj]
        else:
            return obj
    
    def _create_args_object(self):
        """创建参数对象"""
        class Args:
            def __init__(self, **kwargs):
                for key, value in kwargs.items():
                    setattr(self, key, value)
        
        return Args(**self.default_args)
    
    def get_session_info(self, session_id: str) -> Dict[str, Any]:
        """获取会话信息"""
        if session_id not in self.session_manager.sessions:
            raise ValueError(f"会话不存在: {session_id}")
        
        return self.session_manager.sessions[session_id].copy()
    
    def list_user_sessions(self, user_id: Optional[str] = None) -> List[Dict[str, Any]]:
        """列出用户会话"""
        sessions = []
        for session_id, session_info in self.session_manager.sessions.items():
            if user_id is None or session_info.get('user_id') == user_id:
                sessions.append({
                    'session_id': session_id,
                    **session_info
                })
        
        return sorted(sessions, key=lambda x: x['created_at'], reverse=True)
    
    def cleanup_sessions(self, max_age_days: int = 7):
        """清理旧会话"""
        self.session_manager.cleanup_old_sessions(max_age_days)

# 简化的使用接口
def process_model_file(file_path: str, 
                      user_prompt: str = "",
                      model_weights_path: Optional[str] = None,
                      output_dir: Optional[str] = None) -> Dict[str, Any]:
    """
    简化的模型处理接口
    
    Args:
        file_path: 模型文件路径
        user_prompt: 用户提示词
        model_weights_path: 模型权重路径
        output_dir: 输出目录
        
    Returns:
        处理结果
    """
    api = MagicArticulateAPI(
        model_weights_path=model_weights_path,
        session_base_dir=output_dir or "temp_sessions"
    )
    
    result = api.process_uploaded_model(
        file_path=file_path,
        user_prompt=user_prompt
    )
    
    return result

if __name__ == "__main__":
    import argparse
    
    parser = argparse.ArgumentParser(description="MagicArticulate API 测试")
    parser.add_argument("--input", required=True, help="输入模型文件路径")
    parser.add_argument("--prompt", default="", help="用户提示词")
    parser.add_argument("--weights", help="模型权重路径")
    parser.add_argument("--output", default="api_outputs", help="输出目录")
    
    args = parser.parse_args()
    
    # 测试API
    result = process_model_file(
        file_path=args.input,
        user_prompt=args.prompt,
        model_weights_path=args.weights,
        output_dir=args.output
    )
    
    if result['success']:
        print("✅ 处理成功!")
        print(f"会话ID: {result['session_id']}")
        print(f"处理时间: {result['processing_time']:.2f}秒")
        print(f"关节数量: {result['skeleton_data']['joint_count']}")
        print(f"骨骼数量: {result['skeleton_data']['bone_count']}")
        print(f"输出文件: {len(result['output_files'])} 个")
    else:
        print("❌ 处理失败!")
        print(f"错误: {result['error']}")