Spaces:
Sleeping
Sleeping
Gradio app
Browse files- app.py +38 -0
- inference_gradio.py +352 -0
- packages.txt +1 -0
app.py
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import spaces
|
| 3 |
+
from inference_gradio import inference_one_image, model_init
|
| 4 |
+
|
| 5 |
+
MODEL_PATH = "./checkpoints/docres.pkl"
|
| 6 |
+
|
| 7 |
+
model = model_init(MODEL_PATH)
|
| 8 |
+
possible_tasks = [
|
| 9 |
+
"dewarping",
|
| 10 |
+
"deshadowing",
|
| 11 |
+
"appearance",
|
| 12 |
+
"deblurring",
|
| 13 |
+
"binarization",
|
| 14 |
+
]
|
| 15 |
+
|
| 16 |
+
@spaces.GPU
|
| 17 |
+
def run_tasks(image, tasks):
|
| 18 |
+
bgr_image = image[..., ::-1].copy()
|
| 19 |
+
bgr_restored_image = inference_one_image(model, bgr_image, tasks)
|
| 20 |
+
if bgr_restored_image.ndim == 3:
|
| 21 |
+
rgb_image = bgr_restored_image[..., ::-1]
|
| 22 |
+
else:
|
| 23 |
+
rgb_image = bgr_restored_image
|
| 24 |
+
return rgb_image
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
with gr.Blocks() as demo:
|
| 28 |
+
with gr.Row():
|
| 29 |
+
input_image = gr.Image(type="numpy")
|
| 30 |
+
output_image = gr.Image(type="numpy")
|
| 31 |
+
|
| 32 |
+
task = gr.CheckboxGroup(choices=possible_tasks, label="Choose tasks:")
|
| 33 |
+
button = gr.Button()
|
| 34 |
+
button.click(
|
| 35 |
+
run_tasks, inputs=[input_image, task], outputs=[output_image]
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
demo.launch()
|
inference_gradio.py
ADDED
|
@@ -0,0 +1,352 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys
|
| 2 |
+
import cv2
|
| 3 |
+
import utils
|
| 4 |
+
import numpy as np
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
from PIL import Image
|
| 8 |
+
|
| 9 |
+
from utils import convert_state_dict
|
| 10 |
+
from models import restormer_arch
|
| 11 |
+
from data.preprocess.crop_merge_image import stride_integral
|
| 12 |
+
|
| 13 |
+
sys.path.append("./data/MBD/")
|
| 14 |
+
from data.MBD.infer import net1_net2_infer_single_im
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def dewarp_prompt(img):
|
| 21 |
+
mask = net1_net2_infer_single_im(img, "data/MBD/checkpoint/mbd.pkl")
|
| 22 |
+
base_coord = utils.getBasecoord(256, 256) / 256
|
| 23 |
+
img[mask == 0] = 0
|
| 24 |
+
mask = cv2.resize(mask, (256, 256)) / 255
|
| 25 |
+
return img, np.concatenate((base_coord, np.expand_dims(mask, -1)), -1)
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def deshadow_prompt(img):
|
| 29 |
+
h, w = img.shape[:2]
|
| 30 |
+
# img = cv2.resize(img,(128,128))
|
| 31 |
+
img = cv2.resize(img, (1024, 1024))
|
| 32 |
+
rgb_planes = cv2.split(img)
|
| 33 |
+
result_planes = []
|
| 34 |
+
result_norm_planes = []
|
| 35 |
+
bg_imgs = []
|
| 36 |
+
for plane in rgb_planes:
|
| 37 |
+
dilated_img = cv2.dilate(plane, np.ones((7, 7), np.uint8))
|
| 38 |
+
bg_img = cv2.medianBlur(dilated_img, 21)
|
| 39 |
+
bg_imgs.append(bg_img)
|
| 40 |
+
diff_img = 255 - cv2.absdiff(plane, bg_img)
|
| 41 |
+
norm_img = cv2.normalize(
|
| 42 |
+
diff_img,
|
| 43 |
+
None,
|
| 44 |
+
alpha=0,
|
| 45 |
+
beta=255,
|
| 46 |
+
norm_type=cv2.NORM_MINMAX,
|
| 47 |
+
dtype=cv2.CV_8UC1,
|
| 48 |
+
)
|
| 49 |
+
result_planes.append(diff_img)
|
| 50 |
+
result_norm_planes.append(norm_img)
|
| 51 |
+
bg_imgs = cv2.merge(bg_imgs)
|
| 52 |
+
bg_imgs = cv2.resize(bg_imgs, (w, h))
|
| 53 |
+
# result = cv2.merge(result_planes)
|
| 54 |
+
result_norm = cv2.merge(result_norm_planes)
|
| 55 |
+
result_norm[result_norm == 0] = 1
|
| 56 |
+
shadow_map = np.clip(
|
| 57 |
+
img.astype(float) / result_norm.astype(float) * 255, 0, 255
|
| 58 |
+
).astype(np.uint8)
|
| 59 |
+
shadow_map = cv2.resize(shadow_map, (w, h))
|
| 60 |
+
shadow_map = cv2.cvtColor(shadow_map, cv2.COLOR_BGR2GRAY)
|
| 61 |
+
shadow_map = cv2.cvtColor(shadow_map, cv2.COLOR_GRAY2BGR)
|
| 62 |
+
# return shadow_map
|
| 63 |
+
return bg_imgs
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def deblur_prompt(img):
|
| 67 |
+
x = cv2.Sobel(img, cv2.CV_16S, 1, 0)
|
| 68 |
+
y = cv2.Sobel(img, cv2.CV_16S, 0, 1)
|
| 69 |
+
absX = cv2.convertScaleAbs(x) # 转回uint8
|
| 70 |
+
absY = cv2.convertScaleAbs(y)
|
| 71 |
+
high_frequency = cv2.addWeighted(absX, 0.5, absY, 0.5, 0)
|
| 72 |
+
high_frequency = cv2.cvtColor(high_frequency, cv2.COLOR_BGR2GRAY)
|
| 73 |
+
high_frequency = cv2.cvtColor(high_frequency, cv2.COLOR_GRAY2BGR)
|
| 74 |
+
return high_frequency
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def appearance_prompt(img):
|
| 78 |
+
h, w = img.shape[:2]
|
| 79 |
+
# img = cv2.resize(img,(128,128))
|
| 80 |
+
img = cv2.resize(img, (1024, 1024))
|
| 81 |
+
rgb_planes = cv2.split(img)
|
| 82 |
+
result_planes = []
|
| 83 |
+
result_norm_planes = []
|
| 84 |
+
for plane in rgb_planes:
|
| 85 |
+
dilated_img = cv2.dilate(plane, np.ones((7, 7), np.uint8))
|
| 86 |
+
bg_img = cv2.medianBlur(dilated_img, 21)
|
| 87 |
+
diff_img = 255 - cv2.absdiff(plane, bg_img)
|
| 88 |
+
norm_img = cv2.normalize(
|
| 89 |
+
diff_img,
|
| 90 |
+
None,
|
| 91 |
+
alpha=0,
|
| 92 |
+
beta=255,
|
| 93 |
+
norm_type=cv2.NORM_MINMAX,
|
| 94 |
+
dtype=cv2.CV_8UC1,
|
| 95 |
+
)
|
| 96 |
+
result_planes.append(diff_img)
|
| 97 |
+
result_norm_planes.append(norm_img)
|
| 98 |
+
result_norm = cv2.merge(result_norm_planes)
|
| 99 |
+
result_norm = cv2.resize(result_norm, (w, h))
|
| 100 |
+
return result_norm
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
def binarization_promptv2(img):
|
| 104 |
+
result, thresh = utils.SauvolaModBinarization(img)
|
| 105 |
+
thresh = thresh.astype(np.uint8)
|
| 106 |
+
result[result > 155] = 255
|
| 107 |
+
result[result <= 155] = 0
|
| 108 |
+
|
| 109 |
+
x = cv2.Sobel(img, cv2.CV_16S, 1, 0)
|
| 110 |
+
y = cv2.Sobel(img, cv2.CV_16S, 0, 1)
|
| 111 |
+
absX = cv2.convertScaleAbs(x) # 转回uint8
|
| 112 |
+
absY = cv2.convertScaleAbs(y)
|
| 113 |
+
high_frequency = cv2.addWeighted(absX, 0.5, absY, 0.5, 0)
|
| 114 |
+
high_frequency = cv2.cvtColor(high_frequency, cv2.COLOR_BGR2GRAY)
|
| 115 |
+
return np.concatenate(
|
| 116 |
+
(
|
| 117 |
+
np.expand_dims(thresh, -1),
|
| 118 |
+
np.expand_dims(high_frequency, -1),
|
| 119 |
+
np.expand_dims(result, -1),
|
| 120 |
+
),
|
| 121 |
+
-1,
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
def dewarping(model, im_org):
|
| 126 |
+
INPUT_SIZE = 256
|
| 127 |
+
im_masked, prompt_org = dewarp_prompt(im_org.copy())
|
| 128 |
+
|
| 129 |
+
h, w = im_masked.shape[:2]
|
| 130 |
+
im_masked = im_masked.copy()
|
| 131 |
+
im_masked = cv2.resize(im_masked, (INPUT_SIZE, INPUT_SIZE))
|
| 132 |
+
im_masked = im_masked / 255.0
|
| 133 |
+
im_masked = torch.from_numpy(im_masked.transpose(2, 0, 1)).unsqueeze(0)
|
| 134 |
+
im_masked = im_masked.float().to(DEVICE)
|
| 135 |
+
|
| 136 |
+
prompt = torch.from_numpy(prompt_org.transpose(2, 0, 1)).unsqueeze(0)
|
| 137 |
+
prompt = prompt.float().to(DEVICE)
|
| 138 |
+
|
| 139 |
+
in_im = torch.cat((im_masked, prompt), dim=1)
|
| 140 |
+
|
| 141 |
+
# inference
|
| 142 |
+
base_coord = utils.getBasecoord(INPUT_SIZE, INPUT_SIZE) / INPUT_SIZE
|
| 143 |
+
model = model.float()
|
| 144 |
+
with torch.no_grad():
|
| 145 |
+
pred = model(in_im)
|
| 146 |
+
pred = pred[0][:2].permute(1, 2, 0).cpu().numpy()
|
| 147 |
+
pred = pred + base_coord
|
| 148 |
+
## smooth
|
| 149 |
+
for i in range(15):
|
| 150 |
+
pred = cv2.blur(pred, (3, 3), borderType=cv2.BORDER_REPLICATE)
|
| 151 |
+
pred = cv2.resize(pred, (w, h)) * (w, h)
|
| 152 |
+
pred = pred.astype(np.float32)
|
| 153 |
+
out_im = cv2.remap(im_org, pred[:, :, 0], pred[:, :, 1], cv2.INTER_LINEAR)
|
| 154 |
+
|
| 155 |
+
prompt_org = (prompt_org * 255).astype(np.uint8)
|
| 156 |
+
prompt_org = cv2.resize(prompt_org, im_org.shape[:2][::-1])
|
| 157 |
+
|
| 158 |
+
return prompt_org[:, :, 0], prompt_org[:, :, 1], prompt_org[:, :, 2], out_im
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
def appearance(model, im_org):
|
| 162 |
+
MAX_SIZE = 1600
|
| 163 |
+
# obtain im and prompt
|
| 164 |
+
h, w = im_org.shape[:2]
|
| 165 |
+
prompt = appearance_prompt(im_org)
|
| 166 |
+
in_im = np.concatenate((im_org, prompt), -1)
|
| 167 |
+
|
| 168 |
+
# constrain the max resolution
|
| 169 |
+
if max(w, h) < MAX_SIZE:
|
| 170 |
+
in_im, padding_h, padding_w = stride_integral(in_im, 8)
|
| 171 |
+
else:
|
| 172 |
+
in_im = cv2.resize(in_im, (MAX_SIZE, MAX_SIZE))
|
| 173 |
+
|
| 174 |
+
# normalize
|
| 175 |
+
in_im = in_im / 255.0
|
| 176 |
+
in_im = torch.from_numpy(in_im.transpose(2, 0, 1)).unsqueeze(0)
|
| 177 |
+
|
| 178 |
+
# inference
|
| 179 |
+
in_im = in_im.half().to(DEVICE)
|
| 180 |
+
model = model.half()
|
| 181 |
+
with torch.no_grad():
|
| 182 |
+
pred = model(in_im)
|
| 183 |
+
pred = torch.clamp(pred, 0, 1)
|
| 184 |
+
pred = pred[0].permute(1, 2, 0).cpu().numpy()
|
| 185 |
+
pred = (pred * 255).astype(np.uint8)
|
| 186 |
+
|
| 187 |
+
if max(w, h) < MAX_SIZE:
|
| 188 |
+
out_im = pred[padding_h:, padding_w:]
|
| 189 |
+
else:
|
| 190 |
+
pred[pred == 0] = 1
|
| 191 |
+
shadow_map = cv2.resize(im_org, (MAX_SIZE, MAX_SIZE)).astype(
|
| 192 |
+
float
|
| 193 |
+
) / pred.astype(float)
|
| 194 |
+
shadow_map = cv2.resize(shadow_map, (w, h))
|
| 195 |
+
shadow_map[shadow_map == 0] = 0.00001
|
| 196 |
+
out_im = np.clip(im_org.astype(float) / shadow_map, 0, 255).astype(np.uint8)
|
| 197 |
+
|
| 198 |
+
return prompt[:, :, 0], prompt[:, :, 1], prompt[:, :, 2], out_im
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
def deshadowing(model, im_org):
|
| 202 |
+
MAX_SIZE = 1600
|
| 203 |
+
# obtain im and prompt
|
| 204 |
+
h, w = im_org.shape[:2]
|
| 205 |
+
prompt = deshadow_prompt(im_org)
|
| 206 |
+
in_im = np.concatenate((im_org, prompt), -1)
|
| 207 |
+
|
| 208 |
+
# constrain the max resolution
|
| 209 |
+
if max(w, h) < MAX_SIZE:
|
| 210 |
+
in_im, padding_h, padding_w = stride_integral(in_im, 8)
|
| 211 |
+
else:
|
| 212 |
+
in_im = cv2.resize(in_im, (MAX_SIZE, MAX_SIZE))
|
| 213 |
+
|
| 214 |
+
# normalize
|
| 215 |
+
in_im = in_im / 255.0
|
| 216 |
+
in_im = torch.from_numpy(in_im.transpose(2, 0, 1)).unsqueeze(0)
|
| 217 |
+
|
| 218 |
+
# inference
|
| 219 |
+
in_im = in_im.half().to(DEVICE)
|
| 220 |
+
model = model.half()
|
| 221 |
+
with torch.no_grad():
|
| 222 |
+
pred = model(in_im)
|
| 223 |
+
pred = torch.clamp(pred, 0, 1)
|
| 224 |
+
pred = pred[0].permute(1, 2, 0).cpu().numpy()
|
| 225 |
+
pred = (pred * 255).astype(np.uint8)
|
| 226 |
+
|
| 227 |
+
if max(w, h) < MAX_SIZE:
|
| 228 |
+
out_im = pred[padding_h:, padding_w:]
|
| 229 |
+
else:
|
| 230 |
+
pred[pred == 0] = 1
|
| 231 |
+
shadow_map = cv2.resize(im_org, (MAX_SIZE, MAX_SIZE)).astype(
|
| 232 |
+
float
|
| 233 |
+
) / pred.astype(float)
|
| 234 |
+
shadow_map = cv2.resize(shadow_map, (w, h))
|
| 235 |
+
shadow_map[shadow_map == 0] = 0.00001
|
| 236 |
+
out_im = np.clip(im_org.astype(float) / shadow_map, 0, 255).astype(np.uint8)
|
| 237 |
+
|
| 238 |
+
return prompt[:, :, 0], prompt[:, :, 1], prompt[:, :, 2], out_im
|
| 239 |
+
|
| 240 |
+
|
| 241 |
+
def deblurring(model, im_org):
|
| 242 |
+
# setup image
|
| 243 |
+
in_im, padding_h, padding_w = stride_integral(im_org, 8)
|
| 244 |
+
prompt = deblur_prompt(in_im)
|
| 245 |
+
in_im = np.concatenate((in_im, prompt), -1)
|
| 246 |
+
in_im = in_im / 255.0
|
| 247 |
+
in_im = torch.from_numpy(in_im.transpose(2, 0, 1)).unsqueeze(0)
|
| 248 |
+
in_im = in_im.half().to(DEVICE)
|
| 249 |
+
# inference
|
| 250 |
+
model.to(DEVICE)
|
| 251 |
+
model.eval()
|
| 252 |
+
model = model.half()
|
| 253 |
+
with torch.no_grad():
|
| 254 |
+
pred = model(in_im)
|
| 255 |
+
pred = torch.clamp(pred, 0, 1)
|
| 256 |
+
pred = pred[0].permute(1, 2, 0).cpu().numpy()
|
| 257 |
+
pred = (pred * 255).astype(np.uint8)
|
| 258 |
+
out_im = pred[padding_h:, padding_w:]
|
| 259 |
+
|
| 260 |
+
return prompt[:, :, 0], prompt[:, :, 1], prompt[:, :, 2], out_im
|
| 261 |
+
|
| 262 |
+
|
| 263 |
+
def binarization(model, im_org):
|
| 264 |
+
im, padding_h, padding_w = stride_integral(im_org, 8)
|
| 265 |
+
prompt = binarization_promptv2(im)
|
| 266 |
+
h, w = im.shape[:2]
|
| 267 |
+
in_im = np.concatenate((im, prompt), -1)
|
| 268 |
+
|
| 269 |
+
in_im = in_im / 255.0
|
| 270 |
+
in_im = torch.from_numpy(in_im.transpose(2, 0, 1)).unsqueeze(0)
|
| 271 |
+
in_im = in_im.to(DEVICE)
|
| 272 |
+
model = model.half()
|
| 273 |
+
in_im = in_im.half()
|
| 274 |
+
with torch.no_grad():
|
| 275 |
+
pred = model(in_im)
|
| 276 |
+
pred = pred[:, :2, :, :]
|
| 277 |
+
pred = torch.max(torch.softmax(pred, 1), 1)[1]
|
| 278 |
+
pred = pred[0].cpu().numpy()
|
| 279 |
+
pred = (pred * 255).astype(np.uint8)
|
| 280 |
+
pred = cv2.resize(pred, (w, h))
|
| 281 |
+
out_im = pred[padding_h:, padding_w:]
|
| 282 |
+
|
| 283 |
+
return prompt[:, :, 0], prompt[:, :, 1], prompt[:, :, 2], out_im
|
| 284 |
+
|
| 285 |
+
|
| 286 |
+
def model_init(model_path):
|
| 287 |
+
# prepare model
|
| 288 |
+
model = restormer_arch.Restormer(
|
| 289 |
+
inp_channels=6,
|
| 290 |
+
out_channels=3,
|
| 291 |
+
dim=48,
|
| 292 |
+
num_blocks=[2, 3, 3, 4],
|
| 293 |
+
num_refinement_blocks=4,
|
| 294 |
+
heads=[1, 2, 4, 8],
|
| 295 |
+
ffn_expansion_factor=2.66,
|
| 296 |
+
bias=False,
|
| 297 |
+
LayerNorm_type="WithBias",
|
| 298 |
+
dual_pixel_task=True,
|
| 299 |
+
)
|
| 300 |
+
|
| 301 |
+
if DEVICE == "cpu":
|
| 302 |
+
state = convert_state_dict(
|
| 303 |
+
torch.load(model_path, map_location="cpu")["model_state"]
|
| 304 |
+
)
|
| 305 |
+
else:
|
| 306 |
+
state = convert_state_dict(
|
| 307 |
+
torch.load(model_path, map_location="cuda:0")["model_state"]
|
| 308 |
+
)
|
| 309 |
+
model.load_state_dict(state)
|
| 310 |
+
|
| 311 |
+
model.eval()
|
| 312 |
+
model = model.to(DEVICE)
|
| 313 |
+
return model
|
| 314 |
+
|
| 315 |
+
|
| 316 |
+
def resize(image, max_size):
|
| 317 |
+
h, w = image.shape[:2]
|
| 318 |
+
if max(h, w) > max_size:
|
| 319 |
+
if h > w:
|
| 320 |
+
h_new = max_size
|
| 321 |
+
w_new = int(w * h_new / h)
|
| 322 |
+
else:
|
| 323 |
+
w_new = max_size
|
| 324 |
+
h_new = int(h * w_new / w)
|
| 325 |
+
pil_image = Image.fromarray(image)
|
| 326 |
+
pil_image = pil_image.resize((w_new, h_new), Image.Resampling.LANCZOS)
|
| 327 |
+
image = np.array(pil_image)
|
| 328 |
+
return image
|
| 329 |
+
|
| 330 |
+
|
| 331 |
+
def inference_one_image(model, image, tasks):
|
| 332 |
+
# image should be in BGR format
|
| 333 |
+
|
| 334 |
+
if "dewarping" in tasks:
|
| 335 |
+
*_, image = dewarping(model, image)
|
| 336 |
+
|
| 337 |
+
# if only dewarping return here
|
| 338 |
+
if len(tasks) == 1 and "dewarping" in tasks:
|
| 339 |
+
return image
|
| 340 |
+
|
| 341 |
+
image = resize(image, 1536)
|
| 342 |
+
|
| 343 |
+
if "deshadowing" in tasks:
|
| 344 |
+
*_, image = deshadowing(model, image)
|
| 345 |
+
if "appearance" in tasks:
|
| 346 |
+
*_, image = appearance(model, image)
|
| 347 |
+
if "deblurring" in tasks:
|
| 348 |
+
*_, image = deblurring(model, image)
|
| 349 |
+
if "binarization" in tasks:
|
| 350 |
+
*_, image = binarization(model, image)
|
| 351 |
+
|
| 352 |
+
return image
|
packages.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
python3-opencv
|