Spaces:
Runtime error
Runtime error
| import os | |
| os.system('pip install gradio==2.3.0a0') | |
| os.system('pip freeze') | |
| import gradio as gr | |
| from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed, pipeline | |
| tokenizer = AutoTokenizer.from_pretrained("codeparrot/codeparrot-small-code-to-text") | |
| model = AutoModelForCausalLM.from_pretrained("codeparrot/codeparrot-small-code-to-text") | |
| pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, num_return_sequences=1, device=-1) | |
| def make_doctring(gen_prompt): | |
| return gen_prompt + f"\n\n\"\"\"\nExplanation:" | |
| def code_generation(gen_prompts, max_tokens=8, temperature=0.6, seed=42): | |
| set_seed(seed) | |
| prompts = [make_doctring(p) for p in gen_prompts] | |
| generated_text = pipe(prompts, do_sample=True, top_p=0.95, temperature=temperature, max_length=max_tokens)[0] | |
| return generated_text["generated_text"] | |
| title = "Code Explainer" | |
| description = "This is a space to convert Python code into english text explaining what it does using [codeparrot-small-code-to-text](https://huggingface.co/codeparrot/codeparrot-small-code-to-text),\ | |
| a code generation model for Python finetuned on [github-jupyter-code-to-text](https://huggingface.co/datasets/codeparrot/github-jupyter-code-to-text) a dataset of Python code followed by a docstring explaining it, the data was originally extracted from Jupyter notebooks." | |
| EXAMPLES = [ | |
| ["def sort_function(arr):\n n = len(arr)\n \n # Traverse through all array elements\n for i in range(n):\n \n # Last i elements are already in place\n for j in range(0, n-i-1):\n \n # traverse the array from 0 to n-i-1\n # Swap if the element found is greater\n # than the next element\n if arr[j] > arr[j+1]:\n arr[j], arr[j+1] = arr[j+1], arr[j]"], | |
| ["from sklearn import model_selection\nX_train, X_test, Y_train, Y_test = model_selection.train_test_split(X, Y, test_size=0.2)"], | |
| ["def load_text(filename):\n with open(filename, 'r') as f:\n text = f.read()\n return text"] | |
| ] | |
| iface = gr.Interface( | |
| fn=code_generation, | |
| inputs=[ | |
| gr.inputs.Code(language="python", label="Python code snippet", lines=10), | |
| gr.inputs.Slider(minimum=8, maximum=256, step=1, default=256, label="Number of tokens to generate"), | |
| gr.inputs.Slider(minimum=0, maximum=2.5, step=0.1, default=0.1, label="Temperature"), | |
| gr.inputs.Slider(minimum=0, maximum=1000, step=1, default=42, label="Random seed") | |
| ], | |
| outputs=gr.outputs.Code(language="text", label="Generated explanation", lines=10), | |
| examples=EXAMPLES, | |
| layout="horizontal", | |
| theme="monochrome", | |
| description=description, | |
| title=title | |
| ) | |
| iface.launch() | |