File size: 5,819 Bytes
ff8c120
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83ba2ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff8c120
 
 
 
 
 
 
83ba2ca
ff8c120
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import streamlit as st
import os
import zipfile
import tempfile
import base64
from PIL import Image
from transformers import VisionEncoderDecoderModel, ViTFeatureExtractor, AutoTokenizer
import pandas as pd
from nltk.corpus import wordnet
import spacy
import io
from spacy.cli import download

# Download the model if it is not already present
download("en_core_web_sm")

# Load the model
nlp = spacy.load("en_core_web_sm")

# Download NLTK WordNet data
import nltk
nltk.download('wordnet')
nltk.download('omw-1.4')

# Load spaCy model
nlp = spacy.load("en_core_web_sm")

# Load the pre-trained model for image captioning
model_name = "NourFakih/Vit-GPT2-COCO2017Flickr-85k-09"
model = VisionEncoderDecoderModel.from_pretrained(model_name)
feature_extractor = ViTFeatureExtractor.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

def generate_caption(image):
    pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
    output_ids = model.generate(pixel_values)
    caption = tokenizer.decode(output_ids[0], skip_special_tokens=True)
    return caption

def get_synonyms(word):
    synonyms = set()
    for syn in wordnet.synsets(word):
        for lemma in syn.lemmas():
            synonyms.add(lemma.name())
    return synonyms

def preprocess_query(query):
    doc = nlp(query)
    tokens = set()
    for token in doc:
        tokens.add(token.text)
        tokens.add(token.lemma_)
        tokens.update(get_synonyms(token.text))
    return tokens

def search_captions(query, captions):
    query_tokens = preprocess_query(query)
    
    results = []
    for path, caption in captions.items():
        caption_tokens = preprocess_query(caption)
        if query_tokens & caption_tokens:
            results.append((path, caption))
    
    return results

st.title("Image Gallery with Captioning and Search")

# Sidebar for search functionality
with st.sidebar:
    query = st.text_input("Search images by caption:")

# Right side for folder path input and displaying images
option = st.selectbox("Select input method:", ["Upload Images or Zip File"])

uploaded_files = st.file_uploader("Upload images or a zip file containing images:", type=['png', 'jpg', 'jpeg', 'zip'], accept_multiple_files=True)
image_files = []
if uploaded_files:
    for uploaded_file in uploaded_files:
        if uploaded_file.name.endswith('.zip'):
            with zipfile.ZipFile(uploaded_file, 'r') as zip_ref:
                temp_dir = tempfile.mkdtemp()
                zip_ref.extractall(temp_dir)
                for file in zip_ref.namelist():
                    if file.lower().endswith(('png', 'jpg', 'jpeg')):
                        image_files.append(os.path.join(temp_dir, file))
        else:
            if uploaded_file.name.lower().endswith(('png', 'jpg', 'jpeg')):
                temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(uploaded_file.name)[1])
                temp_file.write(uploaded_file.read())
                image_files.append(temp_file.name)

captions = {}
if st.button("Generate Captions", key='generate_captions'):
    for image_file in image_files:
        try:
            image = Image.open(image_file)
            caption = generate_caption(image)
            captions[image_file] = caption
        except Exception as e:
            st.error(f"Error processing {image_file}: {e}")

    # Display images in a grid
    st.subheader("Images and Captions:")
    cols = st.columns(4)
    idx = 0
    for image_path, caption in captions.items():
        col = cols[idx % 4]
        with col:
            try:
                with open(image_path, "rb") as img_file:
                    img_bytes = img_file.read()
                encoded_image = base64.b64encode(img_bytes).decode()
                st.markdown(
                    f"""
                    <div style='text-align: center;'>
                        <img src='data:image/jpeg;base64,{encoded_image}' width='100%'>
                        <p>{caption}</p>
                        <p style='font-size: small; font-style: italic;'>{image_path}</p>
                    </div>
                    """, unsafe_allow_html=True)
            except Exception as e:
                st.error(f"Error displaying {image_path}: {e}")
        idx += 1

    if query:
        results = search_captions(query, captions)
        st.write("Search Results:")
        cols = st.columns(4)
        idx = 0
        for image_path, caption in results:
            col = cols[idx % 4]
            with col:
                try:
                    with open(image_path, "rb") as img_file:
                        img_bytes = img_file.read()
                    encoded_image = base64.b64encode(img_bytes).decode()
                    st.markdown(
                        f"""
                        <div style='text-align: center;'>
                            <img src='data:image/jpeg;base64,{encoded_image}' width='100%'>
                            <p>{caption}</p>
                            <p style='font-size: small; font-style: italic;'>{image_path}</p>
                        </div>
                        """, unsafe_allow_html=True)
                except Exception as e:
                    st.error(f"Error displaying search result {image_path}: {e}")
            idx += 1

    # Save captions to Excel and provide a download button
    df = pd.DataFrame(list(captions.items()), columns=['Image', 'Caption'])
    excel_file = io.BytesIO()
    df.to_excel(excel_file, index=False)
    excel_file.seek(0)
    st.download_button(label="Download captions as Excel",
                       data=excel_file,
                       file_name="captions.xlsx",
                       mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet")