File size: 13,751 Bytes
8a53057 e0c4be3 8a53057 e0c4be3 635fc93 e0c4be3 635fc93 e0c4be3 635fc93 e0c4be3 6a6684e e0c4be3 635fc93 6a6684e 635fc93 e0c4be3 8a53057 e0c4be3 8a53057 e0c4be3 635fc93 e0c4be3 635fc93 e0c4be3 8a53057 e0c4be3 6a6684e e0c4be3 635fc93 6a6684e e0c4be3 6a6684e e0c4be3 6a6684e e0c4be3 8a53057 e0c4be3 635fc93 e0c4be3 635fc93 e0c4be3 8a53057 e0c4be3 6a6684e e0c4be3 6a6684e e0c4be3 6a6684e e0c4be3 6a6684e e0c4be3 6a6684e e0c4be3 6a6684e e0c4be3 8a53057 e0c4be3 7998696 e0c4be3 7998696 e0c4be3 7998696 e0c4be3 8a53057 e0c4be3 7998696 e0c4be3 7998696 8a53057 e0c4be3 8a53057 e0c4be3 8a53057 e0c4be3 635fc93 e0c4be3 7998696 e0c4be3 7998696 e0c4be3 7998696 e0c4be3 635fc93 e0c4be3 8a53057 e0c4be3 6a6684e e0c4be3 635fc93 e0c4be3 8a53057 e0c4be3 8a53057 e0c4be3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from diffusers import StableDiffusionPipeline, DiffusionPipeline
import requests
from PIL import Image
import io
import base64
# Configuraci贸n de modelos libres
MODELS = {
"text": {
"microsoft/DialoGPT-medium": "Chat conversacional",
"microsoft/DialoGPT-large": "Chat conversacional avanzado",
"microsoft/DialoGPT-small": "Chat conversacional r谩pido",
"gpt2": "Generaci贸n de texto",
"gpt2-medium": "GPT-2 mediano",
"gpt2-large": "GPT-2 grande",
"distilgpt2": "GPT-2 optimizado",
"EleutherAI/gpt-neo-125M": "GPT-Neo peque帽o",
"EleutherAI/gpt-neo-1.3B": "GPT-Neo mediano",
"microsoft/DialoGPT-medium": "Chat conversacional",
"facebook/opt-125m": "OPT peque帽o",
"facebook/opt-350m": "OPT mediano",
"bigscience/bloom-560m": "BLOOM multiling眉e",
"bigscience/bloom-1b1": "BLOOM grande",
"microsoft/DialoGPT-medium": "Chat conversacional",
"Helsinki-NLP/opus-mt-es-en": "Traductor espa帽ol-ingl茅s",
"Helsinki-NLP/opus-mt-en-es": "Traductor ingl茅s-espa帽ol"
},
"image": {
"CompVis/stable-diffusion-v1-4": "Stable Diffusion v1.4 (B谩sico)",
"runwayml/stable-diffusion-v1-5": "Stable Diffusion v1.5",
"stabilityai/stable-diffusion-2-1": "Stable Diffusion 2.1",
"stabilityai/stable-diffusion-xl-base-1.0": "SDXL Base",
"stabilityai/stable-diffusion-xl-refiner-1.0": "SDXL Refiner",
"prompthero/openjourney": "Midjourney style",
"dreamlike-art/dreamlike-photoreal-2.0": "Fotorealista",
"nitrosocke/Ghibli-Diffusion": "Estilo Studio Ghibli",
"nitrosocke/mo-di-diffusion": "Estilo moderno"
},
"chat": {
"microsoft/DialoGPT-medium": "Chat conversacional",
"microsoft/DialoGPT-large": "Chat conversacional avanzado",
"microsoft/DialoGPT-small": "Chat conversacional r谩pido",
"facebook/opt-350m": "OPT conversacional",
"bigscience/bloom-560m": "BLOOM multiling眉e"
}
}
# Cache para los modelos
model_cache = {}
def load_text_model(model_name):
"""Cargar modelo de texto con soporte para diferentes tipos"""
if model_name not in model_cache:
print(f"Cargando modelo de texto: {model_name}")
# Detectar tipo de modelo
if "opus-mt" in model_name.lower():
# Modelo de traducci贸n
from transformers import MarianMTModel, MarianTokenizer
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
else:
# Modelo de generaci贸n de texto
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Configurar para chat si es DialoGPT
if "dialogpt" in model_name.lower():
tokenizer.pad_token = tokenizer.eos_token
model.config.pad_token_id = model.config.eos_token_id
model_cache[model_name] = {
"tokenizer": tokenizer,
"model": model,
"type": "text"
}
return model_cache[model_name]
def load_image_model(model_name):
"""Cargar modelo de imagen - versi贸n simplificada"""
if model_name not in model_cache:
print(f"Cargando modelo de imagen: {model_name}")
# Configuraci贸n b谩sica sin optimizaciones complejas
pipe = StableDiffusionPipeline.from_pretrained(
model_name,
torch_dtype=torch.float32,
safety_checker=None
)
# Solo optimizaci贸n b谩sica de memoria
pipe.enable_attention_slicing()
model_cache[model_name] = {
"pipeline": pipe,
"type": "image"
}
return model_cache[model_name]
def generate_text(prompt, model_name, max_length=100):
"""Generar texto con el modelo seleccionado - mejorado para diferentes tipos"""
try:
model_data = load_text_model(model_name)
tokenizer = model_data["tokenizer"]
model = model_data["model"]
# Detectar si es modelo de traducci贸n
if "opus-mt" in model_name.lower():
# Traducci贸n
inputs = tokenizer.encode(prompt, return_tensors="pt", max_length=512, truncation=True)
with torch.no_grad():
outputs = model.generate(inputs, max_length=max_length, num_beams=4, early_stopping=True)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
else:
# Generaci贸n de texto
inputs = tokenizer.encode(prompt, return_tensors="pt")
# Generar
with torch.no_grad():
outputs = model.generate(
inputs,
max_length=max_length,
num_return_sequences=1,
temperature=0.7,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
# Decodificar respuesta
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Para DialoGPT, extraer solo la respuesta del asistente
if "dialogpt" in model_name.lower():
response = response.replace(prompt, "").strip()
return response
except Exception as e:
return f"Error generando texto: {str(e)}"
def generate_image(prompt, model_name, num_inference_steps=20):
"""Generar imagen con el modelo seleccionado - versi贸n simplificada"""
try:
print(f"Generando imagen con modelo: {model_name}")
print(f"Prompt: {prompt}")
print(f"Pasos: {num_inference_steps}")
model_data = load_image_model(model_name)
pipeline = model_data["pipeline"]
# Configuraci贸n b谩sica
image = pipeline(
prompt,
num_inference_steps=num_inference_steps,
guidance_scale=7.5
).images[0]
print("Imagen generada exitosamente")
return image
except Exception as e:
print(f"Error generando imagen: {str(e)}")
return f"Error generando imagen: {str(e)}"
def chat_with_model(message, history, model_name):
"""Funci贸n de chat para DialoGPT con formato de mensajes actualizado"""
try:
model_data = load_text_model(model_name)
tokenizer = model_data["tokenizer"]
model = model_data["model"]
# Construir historial de conversaci贸n desde el nuevo formato
conversation = ""
for msg in history:
if msg["role"] == "user":
conversation += f"User: {msg['content']}\n"
elif msg["role"] == "assistant":
conversation += f"Assistant: {msg['content']}\n"
conversation += f"User: {message}\nAssistant:"
# Generar respuesta
inputs = tokenizer.encode(conversation, return_tensors="pt", truncation=True, max_length=512)
with torch.no_grad():
outputs = model.generate(
inputs,
max_length=inputs.shape[1] + 50,
temperature=0.7,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extraer solo la respuesta del asistente
response = response.split("Assistant:")[-1].strip()
# Retornar el historial actualizado con el nuevo formato
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": response})
return history
except Exception as e:
error_msg = f"Error en el chat: {str(e)}"
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": error_msg})
return history
# Interfaz de Gradio
with gr.Blocks(title="Modelos Libres de IA", theme=gr.themes.Soft()) as demo:
gr.Markdown("# 馃 Modelos Libres de IA")
gr.Markdown("### Genera texto e im谩genes sin l铆mites de cuota")
with gr.Tabs():
# Tab de Generaci贸n de Texto
with gr.TabItem("馃摑 Generaci贸n de Texto"):
with gr.Row():
with gr.Column():
text_model = gr.Dropdown(
choices=list(MODELS["text"].keys()),
value="microsoft/DialoGPT-medium",
label="Modelo de Texto"
)
text_prompt = gr.Textbox(
label="Prompt",
placeholder="Escribe tu prompt aqu铆...",
lines=3
)
max_length = gr.Slider(
minimum=50,
maximum=200,
value=100,
step=10,
label="Longitud m谩xima"
)
text_btn = gr.Button("Generar Texto", variant="primary")
with gr.Column():
text_output = gr.Textbox(
label="Resultado",
lines=10,
interactive=False
)
text_btn.click(
generate_text,
inputs=[text_prompt, text_model, max_length],
outputs=text_output
)
# Tab de Chat
with gr.TabItem("馃挰 Chat"):
with gr.Row():
with gr.Column():
chat_model = gr.Dropdown(
choices=list(MODELS["chat"].keys()),
value="microsoft/DialoGPT-medium",
label="Modelo de Chat"
)
with gr.Column():
chatbot = gr.Chatbot(
label="Chat",
height=400,
type="messages"
)
chat_input = gr.Textbox(
label="Mensaje",
placeholder="Escribe tu mensaje...",
lines=2
)
chat_btn = gr.Button("Enviar", variant="primary")
chat_btn.click(
chat_with_model,
inputs=[chat_input, chatbot, chat_model],
outputs=[chatbot]
)
chat_input.submit(
chat_with_model,
inputs=[chat_input, chatbot, chat_model],
outputs=[chatbot]
)
# Tab de Traducci贸n
with gr.TabItem("馃寪 Traducci贸n"):
with gr.Row():
with gr.Column():
translate_model = gr.Dropdown(
choices=["Helsinki-NLP/opus-mt-es-en", "Helsinki-NLP/opus-mt-en-es"],
value="Helsinki-NLP/opus-mt-es-en",
label="Modelo de Traducci贸n"
)
translate_text = gr.Textbox(
label="Texto a traducir",
placeholder="Escribe el texto que quieres traducir...",
lines=3
)
translate_btn = gr.Button("Traducir", variant="primary")
with gr.Column():
translate_output = gr.Textbox(
label="Traducci贸n",
lines=3,
interactive=False
)
translate_btn.click(
generate_text,
inputs=[translate_text, translate_model, gr.Slider(value=100, visible=False)],
outputs=translate_output
)
# Tab de Generaci贸n de Im谩genes
with gr.TabItem("馃帹 Generaci贸n de Im谩genes"):
with gr.Row():
with gr.Column():
image_model = gr.Dropdown(
choices=list(MODELS["image"].keys()),
value="CompVis/stable-diffusion-v1-4",
label="Modelo de Imagen"
)
image_prompt = gr.Textbox(
label="Prompt de Imagen",
placeholder="Describe la imagen que quieres generar...",
lines=3
)
steps = gr.Slider(
minimum=10,
maximum=50,
value=15,
step=5,
label="Pasos de inferencia"
)
image_btn = gr.Button("Generar Imagen", variant="primary")
with gr.Column():
image_output = gr.Image(
label="Imagen Generada",
type="pil"
)
image_btn.click(
generate_image,
inputs=[image_prompt, image_model, steps],
outputs=image_output
)
# Configuraci贸n para Hugging Face Spaces
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False
) |