File size: 30,025 Bytes
8a53057 e0c4be3 55a784c d1579fc 55a784c 8a53057 d1579fc e0c4be3 635fc93 e0c4be3 635fc93 e0c4be3 635fc93 250115f e0c4be3 36c2ab8 635fc93 84c33f1 36c2ab8 250115f 635fc93 9f40618 250115f 9f40618 635fc93 250115f e0c4be3 8a53057 e0c4be3 8a53057 e0c4be3 635fc93 e0c4be3 250115f 88080e5 250115f 88080e5 250115f 88080e5 250115f 88080e5 250115f 88080e5 e0c4be3 8a53057 e0c4be3 250115f e0c4be3 635fc93 250115f cea89ef 250115f cea89ef 250115f cea89ef 250115f cea89ef 250115f 36c2ab8 250115f 36c2ab8 250115f cea89ef 250115f cea89ef 250115f 36c2ab8 250115f e0c4be3 8a53057 9f40618 cea89ef 250115f cea89ef 250115f cea89ef 250115f 9f40618 cea89ef 250115f cea89ef 250115f cea89ef 250115f cea89ef 250115f cea89ef 9f40618 250115f 9f40618 250115f 9f40618 e0c4be3 635fc93 e0c4be3 635fc93 e0c4be3 cea89ef e0c4be3 8a53057 e0c4be3 36c2ab8 e0c4be3 6a6684e cea89ef e0c4be3 36c2ab8 cea89ef 36c2ab8 cea89ef 36c2ab8 cea89ef e0c4be3 6a6684e e0c4be3 cea89ef e0c4be3 6a6684e e0c4be3 8a53057 9f40618 cea89ef 9f40618 e0c4be3 7998696 e0c4be3 7998696 e0c4be3 7998696 e0c4be3 8a53057 e0c4be3 7998696 cea89ef e0c4be3 7998696 8a53057 e0c4be3 8a53057 e0c4be3 8a53057 e0c4be3 635fc93 e0c4be3 7998696 e0c4be3 7998696 e0c4be3 7998696 e0c4be3 635fc93 e0c4be3 8a53057 e0c4be3 36c2ab8 e0c4be3 635fc93 e0c4be3 9f40618 cea89ef 9f40618 8a53057 e0c4be3 905be7f 8a53057 905be7f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 |
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from diffusers import StableDiffusionPipeline, DiffusionPipeline
import requests
from PIL import Image
import io
import base64
import os
from huggingface_hub import login
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
# Configurar autenticación con Hugging Face
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN:
try:
login(token=HF_TOKEN)
print("✅ Autenticado con Hugging Face")
except Exception as e:
print(f"⚠️ Error de autenticación: {e}")
else:
print("⚠️ No se encontró HF_TOKEN - modelos gated no estarán disponibles")
# Clases para los endpoints API
class TextRequest(BaseModel):
prompt: str
model_name: str
max_length: int = 100
class ImageRequest(BaseModel):
prompt: str
model_name: str
num_inference_steps: int = 20
class VideoRequest(BaseModel):
prompt: str
model_name: str
num_frames: int = 16
num_inference_steps: int = 20
class ChatRequest(BaseModel):
message: str
history: list
model_name: str
# Configuración de modelos libres
MODELS = {
"text": {
"microsoft/DialoGPT-medium": "Chat conversacional",
"microsoft/DialoGPT-large": "Chat conversacional avanzado",
"microsoft/DialoGPT-small": "Chat conversacional rápido",
"gpt2": "Generación de texto",
"gpt2-medium": "GPT-2 mediano",
"gpt2-large": "GPT-2 grande",
"distilgpt2": "GPT-2 optimizado",
"EleutherAI/gpt-neo-125M": "GPT-Neo pequeño",
"EleutherAI/gpt-neo-1.3B": "GPT-Neo mediano",
"facebook/opt-125m": "OPT pequeño",
"facebook/opt-350m": "OPT mediano",
"bigscience/bloom-560m": "BLOOM multilingüe",
"bigscience/bloom-1b1": "BLOOM grande",
"Helsinki-NLP/opus-mt-es-en": "Traductor español-inglés",
"Helsinki-NLP/opus-mt-en-es": "Traductor inglés-español",
# ✅ Nuevos modelos de texto
"mistralai/Voxtral-Mini-3B-2507": "Voxtral Mini 3B - Multimodal",
"tiiuae/falcon-7b-instruct": "Falcon 7B Instruct",
"google/flan-t5-base": "Flan-T5 Base - Tareas múltiples"
},
"image": {
"CompVis/stable-diffusion-v1-4": "Stable Diffusion v1.4 (Libre)",
"stabilityai/stable-diffusion-2-1": "Stable Diffusion 2.1",
"stabilityai/stable-diffusion-xl-base-1.0": "SDXL Base",
"stabilityai/stable-diffusion-3-medium": "SD 3 Medium",
"prompthero/openjourney": "Midjourney Style",
"WarriorMama777/OrangeMixs": "Orange Mixs",
"hakurei/waifu-diffusion": "Waifu Diffusion",
"black-forest-labs/FLUX.1-schnell": "FLUX.1 Schnell (Requiere acceso)",
"black-forest-labs/FLUX.1-dev": "FLUX.1 Dev (Requiere acceso)",
# ✅ Nuevos modelos de imagen
"CompVis/ldm-text2im-large-256": "Latent Diffusion Model 256"
},
"video": {
"damo-vilab/text-to-video-ms-1.7b": "Text-to-Video MS 1.7B (Libre)",
"ali-vilab/text-to-video-ms-1.7b": "Text-to-Video MS 1.7B Alt",
"cerspense/zeroscope_v2_576w": "Zeroscope v2 576w (Libre)",
"cerspense/zeroscope_v2_XL": "Zeroscope v2 XL (Libre)",
"ByteDance/AnimateDiff-Lightning": "AnimateDiff Lightning (Libre)",
"THUDM/CogVideoX-5b": "CogVideoX 5B (Libre)",
"rain1011/pyramid-flow-sd3": "Pyramid Flow SD3 (Libre)",
# ✅ Nuevos modelos de video
"ali-vilab/modelscope-damo-text-to-video-synthesis": "ModelScope Text-to-Video"
},
"chat": {
"microsoft/DialoGPT-medium": "Chat conversacional",
"microsoft/DialoGPT-large": "Chat conversacional avanzado",
"microsoft/DialoGPT-small": "Chat conversacional rápido",
"facebook/opt-350m": "OPT conversacional",
"bigscience/bloom-560m": "BLOOM multilingüe",
# ✅ Nuevos modelos de chat
"mistralai/Voxtral-Mini-3B-2507": "Voxtral Mini 3B - Multimodal",
"tiiuae/falcon-7b-instruct": "Falcon 7B Instruct"
}
}
# Cache para los modelos
model_cache = {}
def load_text_model(model_name):
"""Cargar modelo de texto con soporte para diferentes tipos"""
if model_name not in model_cache:
print(f"Cargando modelo de texto: {model_name}")
try:
# Detectar tipo de modelo
if "opus-mt" in model_name.lower():
# Modelo de traducción
from transformers import MarianMTModel, MarianTokenizer
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
elif "flan-t5" in model_name.lower():
# Modelo Flan-T5
from transformers import T5Tokenizer, T5ForConditionalGeneration
tokenizer = T5Tokenizer.from_pretrained(model_name)
model = T5ForConditionalGeneration.from_pretrained(model_name)
elif "falcon" in model_name.lower():
# Modelo Falcon
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Configurar para Falcon
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
elif "voxtral" in model_name.lower():
# Modelo Voxtral (multimodal)
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Configurar para Voxtral
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
else:
# Modelo de generación de texto estándar
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Configurar para chat si es DialoGPT
if "dialogpt" in model_name.lower():
tokenizer.pad_token = tokenizer.eos_token
model.config.pad_token_id = model.config.eos_token_id
model_cache[model_name] = {
"tokenizer": tokenizer,
"model": model,
"type": "text"
}
except Exception as e:
print(f"Error cargando modelo de texto {model_name}: {e}")
# Fallback a un modelo básico
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
tokenizer.pad_token = tokenizer.eos_token
model.config.pad_token_id = model.config.eos_token_id
model_cache[model_name] = {
"tokenizer": tokenizer,
"model": model,
"type": "text"
}
return model_cache[model_name]
def load_image_model(model_name):
"""Cargar modelo de imagen - versión mejorada con mejor manejo de errores"""
if model_name not in model_cache:
print(f"Cargando modelo de imagen: {model_name}")
try:
# Configuración especial para FLUX
if "flux" in model_name.lower():
try:
from diffusers import FluxPipeline
print("🚀 Cargando FLUX Pipeline...")
pipe = FluxPipeline.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
use_auth_token=HF_TOKEN if HF_TOKEN else None
)
# Solo usar enable_model_cpu_offload si hay acelerador disponible
try:
pipe.enable_model_cpu_offload()
print("✅ FLUX con CPU offload habilitado")
except Exception as offload_error:
print(f"⚠️ No se pudo habilitar CPU offload: {offload_error}")
print("✅ FLUX cargado sin CPU offload")
except Exception as e:
print(f"❌ Error cargando FLUX: {e}")
# Fallback a Stable Diffusion
print("🔄 Fallback a Stable Diffusion...")
pipe = StableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
torch_dtype=torch.float32,
safety_checker=None
)
# Configuración especial para SD 2.1 (problemático)
elif "stable-diffusion-2-1" in model_name:
try:
pipe = StableDiffusionPipeline.from_pretrained(
model_name,
torch_dtype=torch.float32,
safety_checker=None,
requires_safety_checker=False
)
except Exception as e:
print(f"Error cargando SD 2.1: {e}")
# Fallback a SD 1.4
pipe = StableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
torch_dtype=torch.float32,
safety_checker=None
)
# Configuración especial para LDM
elif "ldm-text2im" in model_name:
try:
from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained(
model_name,
torch_dtype=torch.float32
)
except Exception as e:
print(f"Error cargando LDM: {e}")
# Fallback a Stable Diffusion
pipe = StableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
torch_dtype=torch.float32,
safety_checker=None
)
# Configuración para otros modelos
else:
pipe = StableDiffusionPipeline.from_pretrained(
model_name,
torch_dtype=torch.float32,
safety_checker=None,
requires_safety_checker=False
)
# Optimizaciones básicas de memoria
pipe.enable_attention_slicing()
if hasattr(pipe, 'enable_model_cpu_offload'):
try:
pipe.enable_model_cpu_offload()
except Exception as e:
print(f"⚠️ No se pudo habilitar CPU offload: {e}")
model_cache[model_name] = {
"pipeline": pipe,
"type": "image"
}
except Exception as e:
print(f"Error general cargando modelo de imagen {model_name}: {e}")
# Fallback final a SD 1.4
try:
pipe = StableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
torch_dtype=torch.float32,
safety_checker=None
)
pipe.enable_attention_slicing()
model_cache[model_name] = {
"pipeline": pipe,
"type": "image"
}
except Exception as fallback_error:
print(f"Error crítico en fallback: {fallback_error}")
raise
return model_cache[model_name]
def load_video_model(model_name):
"""Cargar modelo de video con soporte para diferentes tipos"""
if model_name not in model_cache:
print(f"Cargando modelo de video: {model_name}")
try:
# Detectar tipo de modelo de video
if "text-to-video" in model_name.lower():
# Modelos de texto a video
from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained(
model_name,
torch_dtype=torch.float32,
variant="fp16"
)
elif "modelscope" in model_name.lower():
# ModelScope models
from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained(
model_name,
torch_dtype=torch.float32
)
elif "zeroscope" in model_name.lower():
# Zeroscope models
from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained(
model_name,
torch_dtype=torch.float32
)
elif "animatediff" in model_name.lower():
# AnimateDiff models
from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained(
model_name,
torch_dtype=torch.float32
)
elif "cogvideo" in model_name.lower():
# CogVideo models
from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained(
model_name,
torch_dtype=torch.float32
)
elif "pyramid-flow" in model_name.lower():
# Pyramid Flow models
from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained(
model_name,
torch_dtype=torch.float32
)
else:
# Fallback a text-to-video genérico
from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained(
model_name,
torch_dtype=torch.float32
)
# Optimizaciones básicas
pipe.enable_attention_slicing()
if hasattr(pipe, 'enable_model_cpu_offload'):
pipe.enable_model_cpu_offload()
model_cache[model_name] = {
"pipeline": pipe,
"type": "video"
}
except Exception as e:
print(f"Error cargando modelo de video {model_name}: {e}")
# Fallback a un modelo básico
try:
from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained(
"damo-vilab/text-to-video-ms-1.7b",
torch_dtype=torch.float32
)
pipe.enable_attention_slicing()
model_cache[model_name] = {
"pipeline": pipe,
"type": "video"
}
except Exception as fallback_error:
print(f"Error crítico en fallback de video: {fallback_error}")
raise
return model_cache[model_name]
def generate_text(prompt, model_name, max_length=100):
"""Generar texto con el modelo seleccionado - mejorado para diferentes tipos"""
try:
model_data = load_text_model(model_name)
tokenizer = model_data["tokenizer"]
model = model_data["model"]
# Detectar si es modelo de traducción
if "opus-mt" in model_name.lower():
# Traducción
inputs = tokenizer.encode(prompt, return_tensors="pt", max_length=512, truncation=True)
with torch.no_grad():
outputs = model.generate(inputs, max_length=max_length, num_beams=4, early_stopping=True)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
else:
# Generación de texto
inputs = tokenizer.encode(prompt, return_tensors="pt")
# Generar
with torch.no_grad():
outputs = model.generate(
inputs,
max_length=max_length,
num_return_sequences=1,
temperature=0.7,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
# Decodificar respuesta
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Para DialoGPT, extraer solo la respuesta del asistente
if "dialogpt" in model_name.lower():
response = response.replace(prompt, "").strip()
return response
except Exception as e:
return f"Error generando texto: {str(e)}"
def generate_image(prompt, model_name, num_inference_steps=20):
"""Generar imagen con el modelo seleccionado - versión simplificada con soporte para FLUX"""
try:
print(f"Generando imagen con modelo: {model_name}")
print(f"Prompt: {prompt}")
print(f"Pasos: {num_inference_steps}")
# Convertir num_inference_steps a entero si es string
if isinstance(num_inference_steps, str):
try:
num_inference_steps = int(num_inference_steps)
except ValueError:
num_inference_steps = 20
print(f"⚠️ No se pudo convertir '{num_inference_steps}' a entero, usando 20")
model_data = load_image_model(model_name)
pipeline = model_data["pipeline"]
# Configuración específica para FLUX
if "flux" in model_name.lower():
import random
# Generar un seed aleatorio para cada imagen
random_seed = random.randint(0, 999999)
print(f"🎲 Usando seed aleatorio para FLUX: {random_seed}")
print(f"🔧 Parámetros FLUX: guidance_scale=3.5, steps=50, max_seq=512")
image = pipeline(
prompt,
height=1024,
width=1024,
guidance_scale=3.5, # ✅ Valor recomendado por la documentación
num_inference_steps=50, # ✅ Valor recomendado por la documentación
max_sequence_length=512, # ✅ Valor recomendado por la documentación
generator=torch.Generator("cpu").manual_seed(random_seed) # ✅ Seed aleatorio
).images[0]
else:
# Configuración básica para otros modelos
image = pipeline(
prompt,
num_inference_steps=num_inference_steps,
guidance_scale=7.5
).images[0]
print("Imagen generada exitosamente")
return image
except Exception as e:
print(f"Error generando imagen: {str(e)}")
return f"Error generando imagen: {str(e)}"
def generate_video(prompt, model_name, num_frames=16, num_inference_steps=20):
"""Generar video con el modelo seleccionado"""
try:
print(f"Generando video con modelo: {model_name}")
print(f"Prompt: {prompt}")
print(f"Frames: {num_frames}")
print(f"Pasos: {num_inference_steps}")
model_data = load_video_model(model_name)
pipeline = model_data["pipeline"]
# Configuración específica por tipo de modelo
if "zeroscope" in model_name.lower():
# Zeroscope models
video_frames = pipeline(
prompt,
num_inference_steps=num_inference_steps,
num_frames=num_frames,
height=256,
width=256
).frames
elif "animatediff" in model_name.lower():
# AnimateDiff models
video_frames = pipeline(
prompt,
num_inference_steps=num_inference_steps,
num_frames=num_frames
).frames
else:
# Text-to-video models (default)
video_frames = pipeline(
prompt,
num_inference_steps=num_inference_steps,
num_frames=num_frames
).frames
print("Video generado exitosamente")
return video_frames
except Exception as e:
print(f"Error generando video: {str(e)}")
return f"Error generando video: {str(e)}"
def chat_with_model(message, history, model_name):
"""Función de chat para DialoGPT con formato de mensajes actualizado"""
try:
model_data = load_text_model(model_name)
tokenizer = model_data["tokenizer"]
model = model_data["model"]
# Construir historial de conversación desde el nuevo formato
conversation = ""
for msg in history:
if msg["role"] == "user":
conversation += f"User: {msg['content']}\n"
elif msg["role"] == "assistant":
conversation += f"Assistant: {msg['content']}\n"
conversation += f"User: {message}\nAssistant:"
# Generar respuesta
inputs = tokenizer.encode(conversation, return_tensors="pt", truncation=True, max_length=512)
with torch.no_grad():
outputs = model.generate(
inputs,
max_length=inputs.shape[1] + 50,
temperature=0.7,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extraer solo la respuesta del asistente
response = response.split("Assistant:")[-1].strip()
# Retornar el historial actualizado con el nuevo formato
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": response})
return history
except Exception as e:
error_msg = f"Error en el chat: {str(e)}"
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": error_msg})
return history
# Interfaz de Gradio
with gr.Blocks(title="Modelos Libres de IA", theme=gr.themes.Soft()) as demo:
gr.Markdown("# 🤖 Modelos Libres de IA")
gr.Markdown("### Genera texto e imágenes sin límites de cuota")
with gr.Tabs():
# Tab de Generación de Texto
with gr.TabItem("📝 Generación de Texto"):
with gr.Row():
with gr.Column():
text_model = gr.Dropdown(
choices=list(MODELS["text"].keys()),
value="microsoft/DialoGPT-medium",
label="Modelo de Texto"
)
text_prompt = gr.Textbox(
label="Prompt",
placeholder="Escribe tu prompt aquí...",
lines=3
)
max_length = gr.Slider(
minimum=50,
maximum=200,
value=100,
step=10,
label="Longitud máxima"
)
text_btn = gr.Button("Generar Texto", variant="primary")
with gr.Column():
text_output = gr.Textbox(
label="Resultado",
lines=10,
interactive=False
)
text_btn.click(
generate_text,
inputs=[text_prompt, text_model, max_length],
outputs=text_output
)
# Tab de Chat
with gr.TabItem("💬 Chat"):
with gr.Row():
with gr.Column():
chat_model = gr.Dropdown(
choices=list(MODELS["chat"].keys()),
value="microsoft/DialoGPT-medium",
label="Modelo de Chat"
)
with gr.Column():
chatbot = gr.Chatbot(
label="Chat",
height=400,
type="messages"
)
chat_input = gr.Textbox(
label="Mensaje",
placeholder="Escribe tu mensaje...",
lines=2
)
chat_btn = gr.Button("Enviar", variant="primary")
chat_btn.click(
chat_with_model,
inputs=[chat_input, chatbot, chat_model],
outputs=[chatbot]
)
chat_input.submit(
chat_with_model,
inputs=[chat_input, chatbot, chat_model],
outputs=[chatbot]
)
# Tab de Traducción
with gr.TabItem("🌐 Traducción"):
with gr.Row():
with gr.Column():
translate_model = gr.Dropdown(
choices=["Helsinki-NLP/opus-mt-es-en", "Helsinki-NLP/opus-mt-en-es"],
value="Helsinki-NLP/opus-mt-es-en",
label="Modelo de Traducción"
)
translate_text = gr.Textbox(
label="Texto a traducir",
placeholder="Escribe el texto que quieres traducir...",
lines=3
)
translate_btn = gr.Button("Traducir", variant="primary")
with gr.Column():
translate_output = gr.Textbox(
label="Traducción",
lines=3,
interactive=False
)
translate_btn.click(
generate_text,
inputs=[translate_text, translate_model, gr.Slider(value=100, visible=False)],
outputs=translate_output
)
# Tab de Generación de Imágenes
with gr.TabItem("🎨 Generación de Imágenes"):
with gr.Row():
with gr.Column():
image_model = gr.Dropdown(
choices=list(MODELS["image"].keys()),
value="CompVis/stable-diffusion-v1-4",
label="Modelo de Imagen"
)
image_prompt = gr.Textbox(
label="Prompt de Imagen",
placeholder="Describe la imagen que quieres generar...",
lines=3
)
steps = gr.Slider(
minimum=10,
maximum=50,
value=15,
step=5,
label="Pasos de inferencia"
)
image_btn = gr.Button("Generar Imagen", variant="primary")
with gr.Column():
image_output = gr.Image(
label="Imagen Generada",
type="pil"
)
image_btn.click(
generate_image,
inputs=[image_prompt, image_model, steps],
outputs=image_output
)
# Tab de Generación de Videos
with gr.TabItem("🎬 Generación de Videos"):
with gr.Row():
with gr.Column():
video_model = gr.Dropdown(
choices=list(MODELS["video"].keys()),
value="damo-vilab/text-to-video-ms-1.7b",
label="Modelo de Video"
)
video_prompt = gr.Textbox(
label="Prompt de Video",
placeholder="Describe el video que quieres generar...",
lines=3
)
num_frames = gr.Slider(
minimum=8,
maximum=32,
value=16,
step=4,
label="Número de frames"
)
video_steps = gr.Slider(
minimum=10,
maximum=50,
value=20,
step=5,
label="Pasos de inferencia"
)
video_btn = gr.Button("Generar Video", variant="primary")
with gr.Column():
video_output = gr.Video(
label="Video Generado",
format="mp4"
)
video_btn.click(
generate_video,
inputs=[video_prompt, video_model, num_frames, video_steps],
outputs=video_output
)
# Configuración para Hugging Face Spaces
# Elimina FastAPI y usa solo Gradio
if __name__ == "__main__":
demo.launch() |