Agregados todos los modelos exitosos del Space test - FLUX, Turbo, Lightning, optimizaciones H200 completas
Browse files
app.py
CHANGED
@@ -61,19 +61,75 @@ else:
|
|
61 |
MODELS = {
|
62 |
"text": {
|
63 |
"microsoft/DialoGPT-medium": "Chat conversacional",
|
|
|
|
|
64 |
"gpt2": "Generación de texto",
|
65 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
},
|
67 |
"image": {
|
68 |
-
|
69 |
-
"stabilityai/
|
|
|
|
|
|
|
|
|
70 |
"stabilityai/stable-diffusion-xl-base-1.0": "SDXL Base",
|
|
|
|
|
|
|
|
|
|
|
71 |
"prompthero/openjourney": "Midjourney Style",
|
72 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
},
|
74 |
"video": {
|
75 |
"damo-vilab/text-to-video-ms-1.7b": "Text-to-Video MS 1.7B (Libre)",
|
76 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
}
|
78 |
}
|
79 |
|
@@ -118,43 +174,392 @@ def load_text_model(model_name):
|
|
118 |
def load_image_model(model_name):
|
119 |
"""Cargar modelo de imagen optimizado para H200"""
|
120 |
if model_name not in model_cache:
|
121 |
-
print(f"
|
122 |
|
123 |
try:
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
pipe = pipe.to(device)
|
131 |
|
132 |
-
# Optimizaciones para H200
|
133 |
if torch.cuda.is_available():
|
134 |
-
|
135 |
-
pipe.enable_vae_slicing()
|
136 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
if hasattr(pipe, 'enable_xformers_memory_efficient_attention'):
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
model_cache[model_name] = pipe
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
except Exception as e:
|
146 |
-
print(f"Error cargando modelo {model_name}: {e}")
|
147 |
-
# Fallback
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
|
156 |
return model_cache[model_name]
|
157 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
def generate_text(prompt, model_name, max_length=100):
|
159 |
"""Generar texto con el modelo seleccionado"""
|
160 |
try:
|
@@ -188,28 +593,172 @@ def generate_text(prompt, model_name, max_length=100):
|
|
188 |
def generate_image(prompt, model_name, negative_prompt="", seed=0, width=1024, height=1024, guidance_scale=7.5, num_inference_steps=20):
|
189 |
"""Generar imagen optimizada para H200"""
|
190 |
try:
|
191 |
-
print(f"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
pipe = load_image_model(model_name)
|
194 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
generator = torch.Generator(device=device).manual_seed(seed)
|
196 |
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
return image
|
210 |
|
211 |
except Exception as e:
|
212 |
-
print(f"Error
|
|
|
|
|
|
|
213 |
error_image = Image.new('RGB', (512, 512), color='red')
|
214 |
return error_image
|
215 |
|
@@ -254,10 +803,45 @@ def chat_with_model(message, history, model_name):
|
|
254 |
history.append({"role": "assistant", "content": error_msg})
|
255 |
return history
|
256 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
257 |
# Interfaz de Gradio
|
258 |
with gr.Blocks(title="Modelos Libres de IA", theme=gr.themes.Soft()) as demo:
|
259 |
gr.Markdown("# 🤖 Modelos Libres de IA")
|
260 |
-
gr.Markdown("### Genera texto
|
261 |
|
262 |
with gr.Tabs():
|
263 |
# Tab de Generación de Texto
|
@@ -301,7 +885,7 @@ with gr.Blocks(title="Modelos Libres de IA", theme=gr.themes.Soft()) as demo:
|
|
301 |
with gr.Row():
|
302 |
with gr.Column():
|
303 |
chat_model = gr.Dropdown(
|
304 |
-
choices=list(MODELS["
|
305 |
value="microsoft/DialoGPT-medium",
|
306 |
label="Modelo de Chat"
|
307 |
)
|
@@ -331,86 +915,166 @@ with gr.Blocks(title="Modelos Libres de IA", theme=gr.themes.Soft()) as demo:
|
|
331 |
outputs=[chatbot]
|
332 |
)
|
333 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
334 |
# Tab de Generación de Imágenes
|
335 |
with gr.TabItem("🎨 Generación de Imágenes"):
|
336 |
with gr.Row():
|
337 |
with gr.Column():
|
|
|
338 |
image_model = gr.Dropdown(
|
339 |
choices=list(MODELS["image"].keys()),
|
340 |
value="CompVis/stable-diffusion-v1-4",
|
341 |
-
label="Modelo"
|
|
|
342 |
)
|
343 |
|
|
|
344 |
image_prompt = gr.Textbox(
|
345 |
label="Prompt",
|
346 |
placeholder="Describe la imagen que quieres generar...",
|
347 |
lines=3
|
348 |
)
|
349 |
|
|
|
350 |
negative_prompt = gr.Textbox(
|
351 |
label="Negative prompt",
|
352 |
placeholder="Enter a negative prompt (optional)",
|
353 |
lines=2
|
354 |
)
|
355 |
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
)
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
395 |
|
|
|
396 |
image_btn = gr.Button("Generar Imagen", variant="primary")
|
397 |
|
398 |
with gr.Column():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
399 |
examples = gr.Examples(
|
400 |
examples=[
|
401 |
["Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"],
|
402 |
["An astronaut riding a green horse"],
|
403 |
["A delicious ceviche cheesecake slice"],
|
404 |
-
["Futuristic AI assistant in a glowing galaxy, neon lights, sci-fi style, cinematic"]
|
|
|
|
|
|
|
|
|
405 |
],
|
406 |
inputs=image_prompt
|
407 |
)
|
408 |
|
|
|
409 |
image_output = gr.Image(
|
410 |
label="Imagen Generada",
|
411 |
type="pil"
|
412 |
)
|
413 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
414 |
image_btn.click(
|
415 |
generate_image,
|
416 |
inputs=[
|
@@ -425,6 +1089,48 @@ with gr.Blocks(title="Modelos Libres de IA", theme=gr.themes.Soft()) as demo:
|
|
425 |
],
|
426 |
outputs=image_output
|
427 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
428 |
|
429 |
# Configuración para Hugging Face Spaces
|
430 |
if __name__ == "__main__":
|
|
|
61 |
MODELS = {
|
62 |
"text": {
|
63 |
"microsoft/DialoGPT-medium": "Chat conversacional",
|
64 |
+
"microsoft/DialoGPT-large": "Chat conversacional avanzado",
|
65 |
+
"microsoft/DialoGPT-small": "Chat conversacional rápido",
|
66 |
"gpt2": "Generación de texto",
|
67 |
+
"gpt2-medium": "GPT-2 mediano",
|
68 |
+
"gpt2-large": "GPT-2 grande",
|
69 |
+
"distilgpt2": "GPT-2 optimizado",
|
70 |
+
"EleutherAI/gpt-neo-125M": "GPT-Neo pequeño",
|
71 |
+
"EleutherAI/gpt-neo-1.3B": "GPT-Neo mediano",
|
72 |
+
"facebook/opt-125m": "OPT pequeño",
|
73 |
+
"facebook/opt-350m": "OPT mediano",
|
74 |
+
"bigscience/bloom-560m": "BLOOM multilingüe",
|
75 |
+
"bigscience/bloom-1b1": "BLOOM grande",
|
76 |
+
"Helsinki-NLP/opus-mt-es-en": "Traductor español-inglés",
|
77 |
+
"Helsinki-NLP/opus-mt-en-es": "Traductor inglés-español",
|
78 |
+
# ✅ Nuevos modelos de texto
|
79 |
+
"mistralai/Voxtral-Mini-3B-2507": "Voxtral Mini 3B - Multimodal",
|
80 |
+
"tiiuae/falcon-7b-instruct": "Falcon 7B Instruct",
|
81 |
+
"google/flan-t5-base": "Flan-T5 Base - Tareas múltiples"
|
82 |
},
|
83 |
"image": {
|
84 |
+
# ⚡ Modelos Turbo (rápidos) - Optimizados para H200
|
85 |
+
"stabilityai/sdxl-turbo": "⚡ SDXL Turbo",
|
86 |
+
"stabilityai/sd-turbo": "⚡ SD Turbo",
|
87 |
+
"ByteDance/SDXL-Lightning": "⚡ SDXL Lightning",
|
88 |
+
|
89 |
+
# 🎨 Modelos base de alta calidad
|
90 |
"stabilityai/stable-diffusion-xl-base-1.0": "SDXL Base",
|
91 |
+
"stabilityai/stable-diffusion-2-1": "Stable Diffusion 2.1",
|
92 |
+
"CompVis/stable-diffusion-v1-4": "Stable Diffusion v1.4 (Libre)",
|
93 |
+
"runwayml/stable-diffusion-v1-5": "Stable Diffusion v1.5",
|
94 |
+
|
95 |
+
# 🎭 Modelos de estilo específico
|
96 |
"prompthero/openjourney": "Midjourney Style",
|
97 |
+
"prompthero/openjourney-v4": "OpenJourney v4",
|
98 |
+
"WarriorMama777/OrangeMixs": "Orange Mixs",
|
99 |
+
"hakurei/waifu-diffusion": "Waifu Diffusion",
|
100 |
+
"SG161222/Realistic_Vision_V5.1_noVAE": "Realistic Vision",
|
101 |
+
"Linaqruf/anything-v3.0": "Anything v3",
|
102 |
+
"XpucT/deliberate-v2": "Deliberate v2",
|
103 |
+
"dreamlike-art/dreamlike-diffusion-1.0": "Dreamlike Diffusion",
|
104 |
+
"KBlueLeaf/kohaku-v2.1": "Kohaku V2.1",
|
105 |
+
|
106 |
+
# 🔐 Modelos FLUX (requieren HF_TOKEN)
|
107 |
+
"black-forest-labs/FLUX.1-dev": "FLUX.1 Dev (Requiere acceso)",
|
108 |
+
"black-forest-labs/FLUX.1-schnell": "FLUX.1 Schnell (Requiere acceso)",
|
109 |
+
|
110 |
+
# 📦 Modelos adicionales
|
111 |
+
"CompVis/ldm-text2im-large-256": "Latent Diffusion Model 256"
|
112 |
},
|
113 |
"video": {
|
114 |
"damo-vilab/text-to-video-ms-1.7b": "Text-to-Video MS 1.7B (Libre)",
|
115 |
+
"ali-vilab/text-to-video-ms-1.7b": "Text-to-Video MS 1.7B Alt",
|
116 |
+
"cerspense/zeroscope_v2_576w": "Zeroscope v2 576w (Libre)",
|
117 |
+
"cerspense/zeroscope_v2_XL": "Zeroscope v2 XL (Libre)",
|
118 |
+
"ByteDance/AnimateDiff-Lightning": "AnimateDiff Lightning (Libre)",
|
119 |
+
"THUDM/CogVideoX-5b": "CogVideoX 5B (Libre)",
|
120 |
+
"rain1011/pyramid-flow-sd3": "Pyramid Flow SD3 (Libre)",
|
121 |
+
# ✅ Nuevos modelos de video
|
122 |
+
"ali-vilab/modelscope-damo-text-to-video-synthesis": "ModelScope Text-to-Video"
|
123 |
+
},
|
124 |
+
"chat": {
|
125 |
+
"microsoft/DialoGPT-medium": "Chat conversacional",
|
126 |
+
"microsoft/DialoGPT-large": "Chat conversacional avanzado",
|
127 |
+
"microsoft/DialoGPT-small": "Chat conversacional rápido",
|
128 |
+
"facebook/opt-350m": "OPT conversacional",
|
129 |
+
"bigscience/bloom-560m": "BLOOM multilingüe",
|
130 |
+
# ✅ Nuevos modelos de chat
|
131 |
+
"mistralai/Voxtral-Mini-3B-2507": "Voxtral Mini 3B - Multimodal",
|
132 |
+
"tiiuae/falcon-7b-instruct": "Falcon 7B Instruct"
|
133 |
}
|
134 |
}
|
135 |
|
|
|
174 |
def load_image_model(model_name):
|
175 |
"""Cargar modelo de imagen optimizado para H200"""
|
176 |
if model_name not in model_cache:
|
177 |
+
print(f"\n🔄 Iniciando carga del modelo: {model_name}")
|
178 |
|
179 |
try:
|
180 |
+
start_time = time.time()
|
181 |
+
|
182 |
+
# Determinar si usar variant fp16 basado en el modelo
|
183 |
+
use_fp16_variant = False
|
184 |
+
if torch.cuda.is_available():
|
185 |
+
# Solo usar fp16 variant para modelos que lo soportan
|
186 |
+
fp16_supported_models = [
|
187 |
+
"stabilityai/sdxl-turbo",
|
188 |
+
"stabilityai/sd-turbo",
|
189 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
190 |
+
"runwayml/stable-diffusion-v1-5",
|
191 |
+
"CompVis/stable-diffusion-v1-4"
|
192 |
+
]
|
193 |
+
use_fp16_variant = any(model in model_name for model in fp16_supported_models)
|
194 |
+
print(f"🔧 FP16 variant: {'✅ Habilitado' if use_fp16_variant else '❌ Deshabilitado'} para {model_name}")
|
195 |
|
196 |
+
# Configuración especial para FLUX
|
197 |
+
if "flux" in model_name.lower() or "black-forest" in model_name.lower():
|
198 |
+
if not HF_TOKEN:
|
199 |
+
print("❌ No hay acceso a modelos gated. Configura HF_TOKEN en el Space.")
|
200 |
+
raise Exception("Acceso denegado a modelos FLUX. Configura HF_TOKEN en las variables de entorno del Space.")
|
201 |
+
|
202 |
+
try:
|
203 |
+
from diffusers import FluxPipeline
|
204 |
+
print("🚀 Cargando FLUX Pipeline...")
|
205 |
+
print(f"🔧 Modelo: {model_name}")
|
206 |
+
print(f"🔑 Usando token de autenticación: {'Sí' if HF_TOKEN else 'No'}")
|
207 |
+
|
208 |
+
# Para modelos FLUX, no usar variant fp16
|
209 |
+
pipe = FluxPipeline.from_pretrained(
|
210 |
+
model_name,
|
211 |
+
torch_dtype=torch_dtype,
|
212 |
+
use_auth_token=HF_TOKEN,
|
213 |
+
variant="fp16" if use_fp16_variant else None
|
214 |
+
)
|
215 |
+
|
216 |
+
print("✅ FLUX Pipeline cargado exitosamente")
|
217 |
+
|
218 |
+
except Exception as e:
|
219 |
+
print(f"❌ Error cargando FLUX: {e}")
|
220 |
+
print(f"🔍 Tipo de error: {type(e).__name__}")
|
221 |
+
|
222 |
+
# Si es un error de autenticación, dar instrucciones específicas
|
223 |
+
if "401" in str(e) or "unauthorized" in str(e).lower():
|
224 |
+
print("🔐 Error de autenticación. Asegúrate de:")
|
225 |
+
print(" 1. Tener acceso al modelo FLUX en Hugging Face")
|
226 |
+
print(" 2. Configurar HF_TOKEN en las variables de entorno del Space")
|
227 |
+
print(" 3. Que el token tenga permisos para acceder a modelos gated")
|
228 |
+
|
229 |
+
# Fallback a Stable Diffusion
|
230 |
+
print("🔄 Fallback a Stable Diffusion...")
|
231 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
232 |
+
"CompVis/stable-diffusion-v1-4",
|
233 |
+
torch_dtype=torch_dtype,
|
234 |
+
safety_checker=None
|
235 |
+
)
|
236 |
+
|
237 |
+
# Configuración especial para SD 2.1 (problemático)
|
238 |
+
elif "stable-diffusion-2-1" in model_name:
|
239 |
+
try:
|
240 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
241 |
+
model_name,
|
242 |
+
torch_dtype=torch_dtype,
|
243 |
+
safety_checker=None,
|
244 |
+
requires_safety_checker=False,
|
245 |
+
variant="fp16" if use_fp16_variant else None
|
246 |
+
)
|
247 |
+
except Exception as e:
|
248 |
+
print(f"Error cargando SD 2.1: {e}")
|
249 |
+
# Fallback a SD 1.4
|
250 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
251 |
+
"CompVis/stable-diffusion-v1-4",
|
252 |
+
torch_dtype=torch_dtype,
|
253 |
+
safety_checker=None
|
254 |
+
)
|
255 |
+
|
256 |
+
# Configuración especial para LDM
|
257 |
+
elif "ldm-text2im" in model_name:
|
258 |
+
try:
|
259 |
+
from diffusers import DiffusionPipeline
|
260 |
+
pipe = DiffusionPipeline.from_pretrained(
|
261 |
+
model_name,
|
262 |
+
torch_dtype=torch_dtype,
|
263 |
+
safety_checker=None
|
264 |
+
)
|
265 |
+
except Exception as e:
|
266 |
+
print(f"Error cargando LDM: {e}")
|
267 |
+
# Fallback a SD 1.4
|
268 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
269 |
+
"CompVis/stable-diffusion-v1-4",
|
270 |
+
torch_dtype=torch_dtype,
|
271 |
+
safety_checker=None
|
272 |
+
)
|
273 |
+
|
274 |
+
# Configuración estándar para otros modelos
|
275 |
+
else:
|
276 |
+
try:
|
277 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
278 |
+
model_name,
|
279 |
+
torch_dtype=torch_dtype,
|
280 |
+
safety_checker=None,
|
281 |
+
variant="fp16" if use_fp16_variant else None
|
282 |
+
)
|
283 |
+
except Exception as e:
|
284 |
+
print(f"Error cargando {model_name}: {e}")
|
285 |
+
# Fallback a SD 1.4
|
286 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
287 |
+
"CompVis/stable-diffusion-v1-4",
|
288 |
+
torch_dtype=torch_dtype,
|
289 |
+
safety_checker=None
|
290 |
+
)
|
291 |
+
|
292 |
+
load_time = time.time() - start_time
|
293 |
+
print(f"⏱️ Tiempo de carga: {load_time:.2f} segundos")
|
294 |
+
|
295 |
+
print(f"🚀 Moviendo modelo a dispositivo: {device}")
|
296 |
pipe = pipe.to(device)
|
297 |
|
298 |
+
# Optimizaciones específicas para H200
|
299 |
if torch.cuda.is_available():
|
300 |
+
print("🔧 Aplicando optimizaciones para H200...")
|
|
|
301 |
|
302 |
+
# Habilitar optimizaciones de memoria (más conservadoras)
|
303 |
+
if hasattr(pipe, 'enable_attention_slicing'):
|
304 |
+
pipe.enable_attention_slicing()
|
305 |
+
print("✅ Attention slicing habilitado")
|
306 |
+
|
307 |
+
# Deshabilitar CPU offload temporalmente (causa problemas con ZeroGPU)
|
308 |
+
# if hasattr(pipe, 'enable_model_cpu_offload') and "sdxl" in model_name.lower():
|
309 |
+
# pipe.enable_model_cpu_offload()
|
310 |
+
# print("✅ CPU offload habilitado (modelo grande)")
|
311 |
+
|
312 |
+
if hasattr(pipe, 'enable_vae_slicing'):
|
313 |
+
pipe.enable_vae_slicing()
|
314 |
+
print("✅ VAE slicing habilitado")
|
315 |
+
|
316 |
+
# XFormers solo si está disponible y el modelo lo soporta
|
317 |
if hasattr(pipe, 'enable_xformers_memory_efficient_attention'):
|
318 |
+
# FLUX models tienen problemas con XFormers, deshabilitar
|
319 |
+
if "flux" in model_name.lower() or "black-forest" in model_name.lower():
|
320 |
+
print("⚠️ XFormers deshabilitado para modelos FLUX (incompatible)")
|
321 |
+
else:
|
322 |
+
try:
|
323 |
+
pipe.enable_xformers_memory_efficient_attention()
|
324 |
+
print("✅ XFormers memory efficient attention habilitado")
|
325 |
+
except Exception as e:
|
326 |
+
print(f"⚠️ XFormers no disponible: {e}")
|
327 |
+
print("🔄 Usando atención estándar")
|
328 |
+
|
329 |
+
print(f"✅ Modelo {model_name} cargado exitosamente")
|
330 |
|
331 |
+
if torch.cuda.is_available():
|
332 |
+
memory_used = torch.cuda.memory_allocated() / 1024**3
|
333 |
+
memory_reserved = torch.cuda.memory_reserved() / 1024**3
|
334 |
+
print(f"💾 Memoria GPU utilizada: {memory_used:.2f} GB")
|
335 |
+
print(f"💾 Memoria GPU reservada: {memory_reserved:.2f} GB")
|
336 |
+
|
337 |
+
# Verificar si la memoria es sospechosamente baja
|
338 |
+
if memory_used < 0.1:
|
339 |
+
print("⚠️ ADVERTENCIA: Memoria GPU muy baja - posible problema de carga")
|
340 |
+
else:
|
341 |
+
print("💾 Memoria CPU")
|
342 |
+
|
343 |
+
# Guardar en cache
|
344 |
model_cache[model_name] = pipe
|
345 |
+
|
346 |
+
except Exception as e:
|
347 |
+
print(f"❌ Error cargando modelo {model_name}: {e}")
|
348 |
+
print(f"🔍 Tipo de error: {type(e).__name__}")
|
349 |
+
|
350 |
+
# Intentar cargar sin variant fp16 si falló
|
351 |
+
if "variant" in str(e) and "fp16" in str(e):
|
352 |
+
print("🔄 Reintentando sin variant fp16...")
|
353 |
+
try:
|
354 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
355 |
+
model_name,
|
356 |
+
torch_dtype=torch_dtype,
|
357 |
+
use_auth_token=HF_TOKEN if HF_TOKEN and ("flux" in model_name.lower() or "black-forest" in model_name.lower()) else None
|
358 |
+
)
|
359 |
+
pipe = pipe.to(device)
|
360 |
+
model_cache[model_name] = pipe
|
361 |
+
print(f"✅ Modelo {model_name} cargado exitosamente (sin fp16 variant)")
|
362 |
+
except Exception as e2:
|
363 |
+
print(f"❌ Error en segundo intento: {e2}")
|
364 |
+
raise e2
|
365 |
+
else:
|
366 |
+
raise e
|
367 |
+
else:
|
368 |
+
print(f"♻️ Modelo {model_name} ya está cargado, reutilizando...")
|
369 |
+
|
370 |
+
return model_cache[model_name]
|
371 |
+
|
372 |
+
def load_video_model(model_name):
|
373 |
+
"""Cargar modelo de video con soporte para diferentes tipos"""
|
374 |
+
if model_name not in model_cache:
|
375 |
+
print(f"Cargando modelo de video: {model_name}")
|
376 |
+
|
377 |
+
try:
|
378 |
+
# Detectar tipo de modelo de video
|
379 |
+
if "text-to-video" in model_name.lower():
|
380 |
+
# Modelos de texto a video
|
381 |
+
from diffusers import DiffusionPipeline
|
382 |
+
pipe = DiffusionPipeline.from_pretrained(
|
383 |
+
model_name,
|
384 |
+
torch_dtype=torch.float32,
|
385 |
+
variant="fp16"
|
386 |
+
)
|
387 |
+
elif "modelscope" in model_name.lower():
|
388 |
+
# ModelScope models
|
389 |
+
from diffusers import DiffusionPipeline
|
390 |
+
pipe = DiffusionPipeline.from_pretrained(
|
391 |
+
model_name,
|
392 |
+
torch_dtype=torch.float32
|
393 |
+
)
|
394 |
+
elif "zeroscope" in model_name.lower():
|
395 |
+
# Zeroscope models
|
396 |
+
from diffusers import DiffusionPipeline
|
397 |
+
pipe = DiffusionPipeline.from_pretrained(
|
398 |
+
model_name,
|
399 |
+
torch_dtype=torch.float32
|
400 |
+
)
|
401 |
+
elif "animatediff" in model_name.lower():
|
402 |
+
# AnimateDiff models
|
403 |
+
from diffusers import DiffusionPipeline
|
404 |
+
pipe = DiffusionPipeline.from_pretrained(
|
405 |
+
model_name,
|
406 |
+
torch_dtype=torch.float32
|
407 |
+
)
|
408 |
+
elif "cogvideo" in model_name.lower():
|
409 |
+
# CogVideo models
|
410 |
+
from diffusers import DiffusionPipeline
|
411 |
+
pipe = DiffusionPipeline.from_pretrained(
|
412 |
+
model_name,
|
413 |
+
torch_dtype=torch.float32
|
414 |
+
)
|
415 |
+
elif "pyramid-flow" in model_name.lower():
|
416 |
+
# Pyramid Flow models
|
417 |
+
from diffusers import DiffusionPipeline
|
418 |
+
pipe = DiffusionPipeline.from_pretrained(
|
419 |
+
model_name,
|
420 |
+
torch_dtype=torch.float32
|
421 |
+
)
|
422 |
+
else:
|
423 |
+
# Fallback a text-to-video genérico
|
424 |
+
from diffusers import DiffusionPipeline
|
425 |
+
pipe = DiffusionPipeline.from_pretrained(
|
426 |
+
model_name,
|
427 |
+
torch_dtype=torch.float32
|
428 |
+
)
|
429 |
+
|
430 |
+
# Optimizaciones básicas
|
431 |
+
pipe.enable_attention_slicing()
|
432 |
+
if hasattr(pipe, 'enable_model_cpu_offload'):
|
433 |
+
pipe.enable_model_cpu_offload()
|
434 |
+
|
435 |
+
model_cache[model_name] = {
|
436 |
+
"pipeline": pipe,
|
437 |
+
"type": "video"
|
438 |
+
}
|
439 |
|
440 |
except Exception as e:
|
441 |
+
print(f"Error cargando modelo de video {model_name}: {e}")
|
442 |
+
# Fallback a un modelo básico
|
443 |
+
try:
|
444 |
+
from diffusers import DiffusionPipeline
|
445 |
+
pipe = DiffusionPipeline.from_pretrained(
|
446 |
+
"damo-vilab/text-to-video-ms-1.7b",
|
447 |
+
torch_dtype=torch.float32
|
448 |
+
)
|
449 |
+
pipe.enable_attention_slicing()
|
450 |
+
|
451 |
+
model_cache[model_name] = {
|
452 |
+
"pipeline": pipe,
|
453 |
+
"type": "video"
|
454 |
+
}
|
455 |
+
except Exception as fallback_error:
|
456 |
+
print(f"Error crítico en fallback de video: {fallback_error}")
|
457 |
+
raise
|
458 |
|
459 |
return model_cache[model_name]
|
460 |
|
461 |
+
@spaces.GPU
|
462 |
+
def generate_video(prompt, model_name, num_frames=16, num_inference_steps=20):
|
463 |
+
"""Generar video con el modelo seleccionado"""
|
464 |
+
try:
|
465 |
+
print(f"Generando video con modelo: {model_name}")
|
466 |
+
print(f"Prompt: {prompt}")
|
467 |
+
print(f"Frames: {num_frames}")
|
468 |
+
print(f"Pasos: {num_inference_steps}")
|
469 |
+
|
470 |
+
model_data = load_video_model(model_name)
|
471 |
+
pipeline = model_data["pipeline"]
|
472 |
+
|
473 |
+
# Configuración específica por tipo de modelo
|
474 |
+
if "zeroscope" in model_name.lower():
|
475 |
+
# Zeroscope models
|
476 |
+
result = pipeline(
|
477 |
+
prompt,
|
478 |
+
num_inference_steps=num_inference_steps,
|
479 |
+
num_frames=num_frames,
|
480 |
+
height=256,
|
481 |
+
width=256
|
482 |
+
)
|
483 |
+
elif "animatediff" in model_name.lower():
|
484 |
+
# AnimateDiff models
|
485 |
+
result = pipeline(
|
486 |
+
prompt,
|
487 |
+
num_inference_steps=num_inference_steps,
|
488 |
+
num_frames=num_frames
|
489 |
+
)
|
490 |
+
else:
|
491 |
+
# Text-to-video models (default)
|
492 |
+
result = pipeline(
|
493 |
+
prompt,
|
494 |
+
num_inference_steps=num_inference_steps,
|
495 |
+
num_frames=num_frames
|
496 |
+
)
|
497 |
+
|
498 |
+
print("Video generado exitosamente")
|
499 |
+
|
500 |
+
# Manejar diferentes tipos de respuesta
|
501 |
+
if hasattr(result, 'frames'):
|
502 |
+
video_frames = result.frames
|
503 |
+
elif hasattr(result, 'videos'):
|
504 |
+
video_frames = result.videos
|
505 |
+
else:
|
506 |
+
video_frames = result
|
507 |
+
|
508 |
+
# Convertir a formato compatible con Gradio
|
509 |
+
if isinstance(video_frames, list):
|
510 |
+
if len(video_frames) == 1:
|
511 |
+
return video_frames[0]
|
512 |
+
else:
|
513 |
+
return video_frames
|
514 |
+
else:
|
515 |
+
# Si es un tensor numpy, convertirlo a formato de video
|
516 |
+
if hasattr(video_frames, 'shape'):
|
517 |
+
import numpy as np
|
518 |
+
print(f"Forma del video: {video_frames.shape}")
|
519 |
+
|
520 |
+
# Convertir a formato de video compatible con Gradio
|
521 |
+
if len(video_frames.shape) == 4: # (frames, height, width, channels)
|
522 |
+
# Convertir frames a formato de video
|
523 |
+
frames_list = []
|
524 |
+
for i in range(video_frames.shape[0]):
|
525 |
+
frame = video_frames[i]
|
526 |
+
# Asegurar que el frame esté en el rango correcto (0-255)
|
527 |
+
if frame.dtype == np.float32 or frame.dtype == np.float16:
|
528 |
+
frame = (frame * 255).astype(np.uint8)
|
529 |
+
frames_list.append(frame)
|
530 |
+
|
531 |
+
# Crear video a partir de frames
|
532 |
+
import imageio
|
533 |
+
import tempfile
|
534 |
+
import os
|
535 |
+
|
536 |
+
# Crear archivo temporal
|
537 |
+
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as tmp_file:
|
538 |
+
temp_path = tmp_file.name
|
539 |
+
|
540 |
+
# Guardar frames como video
|
541 |
+
imageio.mimsave(temp_path, frames_list, fps=8)
|
542 |
+
|
543 |
+
print(f"Video guardado en: {temp_path}")
|
544 |
+
return temp_path
|
545 |
+
|
546 |
+
elif len(video_frames.shape) == 5: # (batch, frames, height, width, channels)
|
547 |
+
# Tomar el primer batch
|
548 |
+
frames = video_frames[0]
|
549 |
+
return generate_video(prompt, model_name, num_frames, num_inference_steps)
|
550 |
+
else:
|
551 |
+
print(f"Forma no reconocida: {video_frames.shape}")
|
552 |
+
return None
|
553 |
+
else:
|
554 |
+
return video_frames
|
555 |
+
|
556 |
+
except Exception as e:
|
557 |
+
print(f"Error generando video: {str(e)}")
|
558 |
+
print(f"Tipo de error: {type(e).__name__}")
|
559 |
+
import traceback
|
560 |
+
traceback.print_exc()
|
561 |
+
return f"Error generando video: {str(e)}"
|
562 |
+
|
563 |
def generate_text(prompt, model_name, max_length=100):
|
564 |
"""Generar texto con el modelo seleccionado"""
|
565 |
try:
|
|
|
593 |
def generate_image(prompt, model_name, negative_prompt="", seed=0, width=1024, height=1024, guidance_scale=7.5, num_inference_steps=20):
|
594 |
"""Generar imagen optimizada para H200"""
|
595 |
try:
|
596 |
+
print(f"\n🎨 Iniciando generación de imagen con H200...")
|
597 |
+
print(f"📝 Prompt: {prompt}")
|
598 |
+
print(f"🚫 Negative prompt: {negative_prompt}")
|
599 |
+
print(f"🎯 Modelo seleccionado: {model_name}")
|
600 |
+
print(f"🔄 Inference steps: {num_inference_steps}")
|
601 |
+
print(f"🎲 Seed: {seed}")
|
602 |
+
print(f"📐 Dimensiones: {width}x{height}")
|
603 |
+
print(f"🎯 Guidance scale: {guidance_scale}")
|
604 |
+
|
605 |
+
start_time = time.time()
|
606 |
+
|
607 |
+
# Convertir parámetros a tipos correctos
|
608 |
+
if isinstance(num_inference_steps, str):
|
609 |
+
try:
|
610 |
+
num_inference_steps = int(num_inference_steps)
|
611 |
+
except ValueError:
|
612 |
+
num_inference_steps = 20
|
613 |
+
print(f"⚠️ No se pudo convertir '{num_inference_steps}' a entero, usando 20")
|
614 |
+
|
615 |
+
if isinstance(seed, str):
|
616 |
+
try:
|
617 |
+
seed = int(seed)
|
618 |
+
except ValueError:
|
619 |
+
seed = 0
|
620 |
+
print(f"⚠️ No se pudo convertir '{seed}' a entero, usando 0")
|
621 |
+
|
622 |
+
if isinstance(width, str):
|
623 |
+
try:
|
624 |
+
width = int(width)
|
625 |
+
except ValueError:
|
626 |
+
width = 1024
|
627 |
+
print(f"⚠️ No se pudo convertir '{width}' a entero, usando 1024")
|
628 |
+
|
629 |
+
if isinstance(height, str):
|
630 |
+
try:
|
631 |
+
height = int(height)
|
632 |
+
except ValueError:
|
633 |
+
height = 1024
|
634 |
+
print(f"⚠️ No se pudo convertir '{height}' a entero, usando 1024")
|
635 |
|
636 |
+
if isinstance(guidance_scale, str):
|
637 |
+
try:
|
638 |
+
guidance_scale = float(guidance_scale)
|
639 |
+
except ValueError:
|
640 |
+
guidance_scale = 7.5
|
641 |
+
print(f"⚠️ No se pudo convertir '{guidance_scale}' a float, usando 7.5")
|
642 |
+
|
643 |
+
# Cargar el modelo
|
644 |
pipe = load_image_model(model_name)
|
645 |
|
646 |
+
# Ajustar parámetros según el tipo de modelo
|
647 |
+
if "turbo" in model_name.lower():
|
648 |
+
guidance_scale = min(guidance_scale, 1.0)
|
649 |
+
num_inference_steps = min(num_inference_steps, 4)
|
650 |
+
print(f"⚡ Modelo turbo - Ajustando parámetros: guidance={guidance_scale}, steps={num_inference_steps}")
|
651 |
+
elif "lightning" in model_name.lower():
|
652 |
+
guidance_scale = min(guidance_scale, 1.0)
|
653 |
+
num_inference_steps = max(num_inference_steps, 4)
|
654 |
+
print(f"⚡ Modelo lightning - Ajustando parámetros: guidance={guidance_scale}, steps={num_inference_steps}")
|
655 |
+
elif "flux" in model_name.lower():
|
656 |
+
guidance_scale = max(3.5, min(guidance_scale, 7.5))
|
657 |
+
num_inference_steps = max(15, num_inference_steps)
|
658 |
+
print(f"🔐 Modelo FLUX - Ajustando parámetros: guidance={guidance_scale}, steps={num_inference_steps}")
|
659 |
+
|
660 |
generator = torch.Generator(device=device).manual_seed(seed)
|
661 |
|
662 |
+
print("🎨 Iniciando generación de imagen con H200...")
|
663 |
+
inference_start = time.time()
|
664 |
+
|
665 |
+
# Optimizaciones específicas para H200
|
666 |
+
if torch.cuda.is_available():
|
667 |
+
print("🚀 Aplicando optimizaciones específicas para H200...")
|
668 |
+
|
669 |
+
# Limpiar cache de GPU antes de la inferencia
|
670 |
+
torch.cuda.empty_cache()
|
671 |
+
|
672 |
+
# Generar la imagen
|
673 |
+
print("⚡ Generando imagen con H200...")
|
674 |
+
|
675 |
+
# Configurar parámetros de generación
|
676 |
+
generation_kwargs = {
|
677 |
+
"prompt": prompt,
|
678 |
+
"height": height,
|
679 |
+
"width": width,
|
680 |
+
"guidance_scale": guidance_scale,
|
681 |
+
"num_inference_steps": num_inference_steps,
|
682 |
+
"generator": generator
|
683 |
+
}
|
684 |
+
|
685 |
+
# Agregar parámetros opcionales
|
686 |
+
if negative_prompt and negative_prompt.strip():
|
687 |
+
generation_kwargs["negative_prompt"] = negative_prompt.strip()
|
688 |
+
|
689 |
+
# Generar la imagen
|
690 |
+
result = pipe(**generation_kwargs)
|
691 |
+
|
692 |
+
# Verificar que la imagen se generó correctamente
|
693 |
+
if hasattr(result, 'images') and len(result.images) > 0:
|
694 |
+
image = result.images[0]
|
695 |
+
|
696 |
+
# Verificar que la imagen no sea completamente negra
|
697 |
+
if image is not None:
|
698 |
+
# Convertir a numpy para verificar
|
699 |
+
img_array = np.array(image)
|
700 |
+
if img_array.size > 0:
|
701 |
+
# Verificar si la imagen es completamente negra
|
702 |
+
if np.all(img_array == 0) or np.all(img_array < 10):
|
703 |
+
print("⚠️ ADVERTENCIA: Imagen generada es completamente negra")
|
704 |
+
print("🔄 Reintentando con parámetros ajustados...")
|
705 |
+
|
706 |
+
# Reintentar con parámetros más conservadores
|
707 |
+
generation_kwargs["guidance_scale"] = max(1.0, guidance_scale * 0.8)
|
708 |
+
generation_kwargs["num_inference_steps"] = max(10, num_inference_steps)
|
709 |
+
|
710 |
+
result = pipe(**generation_kwargs)
|
711 |
+
image = result.images[0]
|
712 |
+
else:
|
713 |
+
print("✅ Imagen generada correctamente")
|
714 |
+
else:
|
715 |
+
print("❌ Error: Imagen vacía")
|
716 |
+
raise Exception("Imagen vacía generada")
|
717 |
+
else:
|
718 |
+
print("❌ Error: Imagen es None")
|
719 |
+
raise Exception("Imagen es None")
|
720 |
+
else:
|
721 |
+
print("❌ Error: No se generaron imágenes")
|
722 |
+
raise Exception("No se generaron imágenes")
|
723 |
+
else:
|
724 |
+
# Fallback para CPU
|
725 |
+
generation_kwargs = {
|
726 |
+
"prompt": prompt,
|
727 |
+
"height": height,
|
728 |
+
"width": width,
|
729 |
+
"guidance_scale": guidance_scale,
|
730 |
+
"num_inference_steps": num_inference_steps,
|
731 |
+
"generator": generator
|
732 |
+
}
|
733 |
+
|
734 |
+
if negative_prompt and negative_prompt.strip():
|
735 |
+
generation_kwargs["negative_prompt"] = negative_prompt.strip()
|
736 |
+
|
737 |
+
result = pipe(**generation_kwargs)
|
738 |
+
image = result.images[0]
|
739 |
+
|
740 |
+
inference_time = time.time() - inference_start
|
741 |
+
total_time = time.time() - start_time
|
742 |
+
|
743 |
+
print(f"✅ Imagen generada exitosamente con H200!")
|
744 |
+
print(f"⏱️ Tiempo de inferencia: {inference_time:.2f} segundos")
|
745 |
+
print(f"⏱️ Tiempo total: {total_time:.2f} segundos")
|
746 |
+
print(f"🎲 Seed final: {seed}")
|
747 |
+
|
748 |
+
if torch.cuda.is_available():
|
749 |
+
print(f"💾 Memoria GPU utilizada: {torch.cuda.memory_allocated() / 1024**3:.2f} GB")
|
750 |
+
print(f"💾 Memoria GPU libre: {torch.cuda.memory_reserved() / 1024**3:.2f} GB")
|
751 |
+
print(f"🚀 Velocidad H200: {num_inference_steps/inference_time:.1f} steps/segundo")
|
752 |
+
else:
|
753 |
+
print("💾 Memoria CPU")
|
754 |
+
|
755 |
return image
|
756 |
|
757 |
except Exception as e:
|
758 |
+
print(f"❌ Error en inferencia: {e}")
|
759 |
+
print(f"🔍 Tipo de error: {type(e).__name__}")
|
760 |
+
print(f"📋 Detalles del error: {str(e)}")
|
761 |
+
# Crear imagen de error
|
762 |
error_image = Image.new('RGB', (512, 512), color='red')
|
763 |
return error_image
|
764 |
|
|
|
803 |
history.append({"role": "assistant", "content": error_msg})
|
804 |
return history
|
805 |
|
806 |
+
# Verificar acceso a modelos gated
|
807 |
+
def check_gated_model_access():
|
808 |
+
"""Verificar si tenemos acceso a modelos gated"""
|
809 |
+
if not HF_TOKEN:
|
810 |
+
return False
|
811 |
+
|
812 |
+
try:
|
813 |
+
# Intentar acceder a un modelo gated para verificar permisos
|
814 |
+
from huggingface_hub import model_info
|
815 |
+
info = model_info("black-forest-labs/FLUX.1-dev", token=HF_TOKEN)
|
816 |
+
print(f"✅ Acceso verificado a FLUX.1-dev: {info.modelId}")
|
817 |
+
return True
|
818 |
+
except Exception as e:
|
819 |
+
print(f"❌ No se pudo verificar acceso a modelos gated: {e}")
|
820 |
+
return False
|
821 |
+
|
822 |
+
# Verificar acceso al inicio
|
823 |
+
GATED_ACCESS = check_gated_model_access()
|
824 |
+
|
825 |
+
# Mostrar estado de configuración al inicio
|
826 |
+
print("=" * 60)
|
827 |
+
print("🚀 SPACE NTIA - ESTADO DE CONFIGURACIÓN")
|
828 |
+
print("=" * 60)
|
829 |
+
print(f"🔑 Token HF configurado: {'✅' if HF_TOKEN else '❌'}")
|
830 |
+
print(f"🔐 Acceso a modelos gated: {'✅' if GATED_ACCESS else '❌'}")
|
831 |
+
print(f"🎨 Modelos FLUX disponibles: {'✅' if GATED_ACCESS else '❌'}")
|
832 |
+
print("=" * 60)
|
833 |
+
|
834 |
+
if not GATED_ACCESS:
|
835 |
+
print("⚠️ Para usar modelos FLUX:")
|
836 |
+
print(" 1. Configura HF_TOKEN en las variables de entorno del Space")
|
837 |
+
print(" 2. Solicita acceso a los modelos FLUX en Hugging Face")
|
838 |
+
print(" 3. Acepta los términos de licencia")
|
839 |
+
print("=" * 60)
|
840 |
+
|
841 |
# Interfaz de Gradio
|
842 |
with gr.Blocks(title="Modelos Libres de IA", theme=gr.themes.Soft()) as demo:
|
843 |
gr.Markdown("# 🤖 Modelos Libres de IA")
|
844 |
+
gr.Markdown("### Genera texto, imágenes y videos sin límites de cuota")
|
845 |
|
846 |
with gr.Tabs():
|
847 |
# Tab de Generación de Texto
|
|
|
885 |
with gr.Row():
|
886 |
with gr.Column():
|
887 |
chat_model = gr.Dropdown(
|
888 |
+
choices=list(MODELS["chat"].keys()),
|
889 |
value="microsoft/DialoGPT-medium",
|
890 |
label="Modelo de Chat"
|
891 |
)
|
|
|
915 |
outputs=[chatbot]
|
916 |
)
|
917 |
|
918 |
+
# Tab de Traducción
|
919 |
+
with gr.TabItem("🌐 Traducción"):
|
920 |
+
with gr.Row():
|
921 |
+
with gr.Column():
|
922 |
+
translate_model = gr.Dropdown(
|
923 |
+
choices=["Helsinki-NLP/opus-mt-es-en", "Helsinki-NLP/opus-mt-en-es"],
|
924 |
+
value="Helsinki-NLP/opus-mt-es-en",
|
925 |
+
label="Modelo de Traducción"
|
926 |
+
)
|
927 |
+
translate_text = gr.Textbox(
|
928 |
+
label="Texto a traducir",
|
929 |
+
placeholder="Escribe el texto que quieres traducir...",
|
930 |
+
lines=3
|
931 |
+
)
|
932 |
+
translate_btn = gr.Button("Traducir", variant="primary")
|
933 |
+
|
934 |
+
with gr.Column():
|
935 |
+
translate_output = gr.Textbox(
|
936 |
+
label="Traducción",
|
937 |
+
lines=3,
|
938 |
+
interactive=False
|
939 |
+
)
|
940 |
+
|
941 |
+
translate_btn.click(
|
942 |
+
generate_text,
|
943 |
+
inputs=[translate_text, translate_model, gr.Slider(value=100, visible=False)],
|
944 |
+
outputs=translate_output
|
945 |
+
)
|
946 |
+
|
947 |
# Tab de Generación de Imágenes
|
948 |
with gr.TabItem("🎨 Generación de Imágenes"):
|
949 |
with gr.Row():
|
950 |
with gr.Column():
|
951 |
+
# Modelo
|
952 |
image_model = gr.Dropdown(
|
953 |
choices=list(MODELS["image"].keys()),
|
954 |
value="CompVis/stable-diffusion-v1-4",
|
955 |
+
label="Modelo",
|
956 |
+
info="Select a high-quality model (FLUX models require HF_TOKEN)"
|
957 |
)
|
958 |
|
959 |
+
# Prompt principal
|
960 |
image_prompt = gr.Textbox(
|
961 |
label="Prompt",
|
962 |
placeholder="Describe la imagen que quieres generar...",
|
963 |
lines=3
|
964 |
)
|
965 |
|
966 |
+
# Negative prompt
|
967 |
negative_prompt = gr.Textbox(
|
968 |
label="Negative prompt",
|
969 |
placeholder="Enter a negative prompt (optional)",
|
970 |
lines=2
|
971 |
)
|
972 |
|
973 |
+
# Advanced Settings
|
974 |
+
with gr.Accordion("Advanced Settings", open=False):
|
975 |
+
with gr.Row():
|
976 |
+
with gr.Column():
|
977 |
+
seed = gr.Slider(
|
978 |
+
minimum=0,
|
979 |
+
maximum=2147483647,
|
980 |
+
value=324354329,
|
981 |
+
step=1,
|
982 |
+
label="Seed",
|
983 |
+
info="Random seed for generation"
|
984 |
+
)
|
985 |
+
|
986 |
+
with gr.Column():
|
987 |
+
guidance_scale = gr.Slider(
|
988 |
+
minimum=0,
|
989 |
+
maximum=20,
|
990 |
+
value=7.5,
|
991 |
+
step=0.1,
|
992 |
+
label="Guidance scale",
|
993 |
+
info="Controls how closely the image follows the prompt (higher = more adherence)"
|
994 |
+
)
|
995 |
+
|
996 |
+
with gr.Row():
|
997 |
+
with gr.Column():
|
998 |
+
width = gr.Slider(
|
999 |
+
minimum=256,
|
1000 |
+
maximum=1024,
|
1001 |
+
value=1024,
|
1002 |
+
step=64,
|
1003 |
+
label="Width"
|
1004 |
+
)
|
1005 |
+
height = gr.Slider(
|
1006 |
+
minimum=256,
|
1007 |
+
maximum=1024,
|
1008 |
+
value=1024,
|
1009 |
+
step=64,
|
1010 |
+
label="Height"
|
1011 |
+
)
|
1012 |
+
|
1013 |
+
with gr.Column():
|
1014 |
+
num_inference_steps = gr.Slider(
|
1015 |
+
minimum=1,
|
1016 |
+
maximum=100,
|
1017 |
+
value=20,
|
1018 |
+
step=1,
|
1019 |
+
label="Number of inference steps",
|
1020 |
+
info="More steps = higher quality but slower generation"
|
1021 |
+
)
|
1022 |
|
1023 |
+
# Botón de generación
|
1024 |
image_btn = gr.Button("Generar Imagen", variant="primary")
|
1025 |
|
1026 |
with gr.Column():
|
1027 |
+
# Información del modelo
|
1028 |
+
model_info = gr.Markdown(
|
1029 |
+
value="**Model Info:** CompVis/stable-diffusion-v1-4\n\n"
|
1030 |
+
"🎨 Stable Diffusion v1.4 • Recommended steps: 20-50 • "
|
1031 |
+
"Guidance scale: 7.5-15 • Best for: General purpose\n\n"
|
1032 |
+
"**Status:** ✅ Available"
|
1033 |
+
)
|
1034 |
+
|
1035 |
+
# Ejemplos
|
1036 |
examples = gr.Examples(
|
1037 |
examples=[
|
1038 |
["Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"],
|
1039 |
["An astronaut riding a green horse"],
|
1040 |
["A delicious ceviche cheesecake slice"],
|
1041 |
+
["Futuristic AI assistant in a glowing galaxy, neon lights, sci-fi style, cinematic"],
|
1042 |
+
["Portrait of a beautiful woman, realistic, high quality, detailed"],
|
1043 |
+
["Anime girl with blue hair, detailed, high quality"],
|
1044 |
+
["Cyberpunk city at night, neon lights, detailed, 8k"],
|
1045 |
+
["Fantasy landscape with mountains and dragons, epic, detailed"]
|
1046 |
],
|
1047 |
inputs=image_prompt
|
1048 |
)
|
1049 |
|
1050 |
+
# Output de imagen
|
1051 |
image_output = gr.Image(
|
1052 |
label="Imagen Generada",
|
1053 |
type="pil"
|
1054 |
)
|
1055 |
|
1056 |
+
# Función para actualizar info del modelo
|
1057 |
+
def update_model_info(model_name):
|
1058 |
+
model_descriptions = {
|
1059 |
+
"CompVis/stable-diffusion-v1-4": "🎨 Stable Diffusion v1.4 • Recommended steps: 20-50 • Guidance scale: 7.5-15 • Best for: General purpose",
|
1060 |
+
"stabilityai/stable-diffusion-2-1": "🎨 Stable Diffusion 2.1 • Recommended steps: 20-50 • Guidance scale: 7.5-15 • Best for: High quality",
|
1061 |
+
"stabilityai/stable-diffusion-xl-base-1.0": "🎨 SDXL Base • Recommended steps: 25-50 • Guidance scale: 7.5-15 • Best for: High resolution",
|
1062 |
+
"stabilityai/sdxl-turbo": "⚡ SDXL Turbo • Recommended steps: 1-4 • Guidance scale: 1.0 • Best for: Fast generation",
|
1063 |
+
"stabilityai/sd-turbo": "⚡ SD Turbo • Recommended steps: 1-4 • Guidance scale: 1.0 • Best for: Fast generation",
|
1064 |
+
"black-forest-labs/FLUX.1-dev": "🔐 FLUX Model - High quality • Recommended steps: 20-50 • Guidance scale: 3.5-7.5 • Best for: Professional results",
|
1065 |
+
"black-forest-labs/FLUX.1-schnell": "🔐 FLUX Schnell - Fast quality • Recommended steps: 15-30 • Guidance scale: 3.5-7.5 • Best for: Quick professional results"
|
1066 |
+
}
|
1067 |
+
|
1068 |
+
description = model_descriptions.get(model_name, "🎨 Model • Recommended steps: 20-50 • Guidance scale: 7.5-15 • Best for: General purpose")
|
1069 |
+
return f"**Model Info:** {model_name}\n\n{description}\n\n**Status:** ✅ Available"
|
1070 |
+
|
1071 |
+
# Eventos
|
1072 |
+
image_model.change(
|
1073 |
+
update_model_info,
|
1074 |
+
inputs=[image_model],
|
1075 |
+
outputs=[model_info]
|
1076 |
+
)
|
1077 |
+
|
1078 |
image_btn.click(
|
1079 |
generate_image,
|
1080 |
inputs=[
|
|
|
1089 |
],
|
1090 |
outputs=image_output
|
1091 |
)
|
1092 |
+
|
1093 |
+
# Tab de Generación de Videos
|
1094 |
+
with gr.TabItem("🎬 Generación de Videos"):
|
1095 |
+
with gr.Row():
|
1096 |
+
with gr.Column():
|
1097 |
+
video_model = gr.Dropdown(
|
1098 |
+
choices=list(MODELS["video"].keys()),
|
1099 |
+
value="damo-vilab/text-to-video-ms-1.7b",
|
1100 |
+
label="Modelo de Video"
|
1101 |
+
)
|
1102 |
+
video_prompt = gr.Textbox(
|
1103 |
+
label="Prompt de Video",
|
1104 |
+
placeholder="Describe el video que quieres generar...",
|
1105 |
+
lines=3
|
1106 |
+
)
|
1107 |
+
num_frames = gr.Slider(
|
1108 |
+
minimum=8,
|
1109 |
+
maximum=32,
|
1110 |
+
value=16,
|
1111 |
+
step=4,
|
1112 |
+
label="Número de frames"
|
1113 |
+
)
|
1114 |
+
video_steps = gr.Slider(
|
1115 |
+
minimum=10,
|
1116 |
+
maximum=50,
|
1117 |
+
value=20,
|
1118 |
+
step=5,
|
1119 |
+
label="Pasos de inferencia"
|
1120 |
+
)
|
1121 |
+
video_btn = gr.Button("Generar Video", variant="primary")
|
1122 |
+
|
1123 |
+
with gr.Column():
|
1124 |
+
video_output = gr.Video(
|
1125 |
+
label="Video Generado",
|
1126 |
+
format="mp4"
|
1127 |
+
)
|
1128 |
+
|
1129 |
+
video_btn.click(
|
1130 |
+
generate_video,
|
1131 |
+
inputs=[video_prompt, video_model, num_frames, video_steps],
|
1132 |
+
outputs=video_output
|
1133 |
+
)
|
1134 |
|
1135 |
# Configuración para Hugging Face Spaces
|
1136 |
if __name__ == "__main__":
|