Vertex / app /main.py
bibibi12345's picture
Update app/main.py
16ff901 verified
raw
history blame
36 kB
from fastapi import FastAPI, HTTPException, Depends, Header, Request
from fastapi.responses import JSONResponse, StreamingResponse
from fastapi.security import APIKeyHeader
from pydantic import BaseModel, ConfigDict, Field
from typing import List, Dict, Any, Optional, Union, Literal
import base64
import re
import json
import time
import os
import glob
import random
from google.oauth2 import service_account
import config
from google.genai import types
from google import genai
client = None
app = FastAPI(title="OpenAI to Gemini Adapter")
# API Key security scheme
api_key_header = APIKeyHeader(name="Authorization", auto_error=False)
# Dependency for API key validation
async def get_api_key(authorization: Optional[str] = Header(None)):
if authorization is None:
raise HTTPException(
status_code=401,
detail="Missing API key. Please include 'Authorization: Bearer YOUR_API_KEY' header."
)
# Check if the header starts with "Bearer "
if not authorization.startswith("Bearer "):
raise HTTPException(
status_code=401,
detail="Invalid API key format. Use 'Authorization: Bearer YOUR_API_KEY'"
)
# Extract the API key
api_key = authorization.replace("Bearer ", "")
# Validate the API key
if not config.validate_api_key(api_key):
raise HTTPException(
status_code=401,
detail="Invalid API key"
)
return api_key
# Credential Manager for handling multiple service accounts
class CredentialManager:
def __init__(self, default_credentials_dir="/app/credentials"):
# Use environment variable if set, otherwise use default
self.credentials_dir = os.environ.get("CREDENTIALS_DIR", default_credentials_dir)
self.credentials_files = []
self.current_index = 0
self.credentials = None
self.project_id = None
self.load_credentials_list()
def load_credentials_list(self):
"""Load the list of available credential files"""
# Look for all .json files in the credentials directory
pattern = os.path.join(self.credentials_dir, "*.json")
self.credentials_files = glob.glob(pattern)
if not self.credentials_files:
print(f"No credential files found in {self.credentials_dir}")
return False
print(f"Found {len(self.credentials_files)} credential files: {[os.path.basename(f) for f in self.credentials_files]}")
return True
def refresh_credentials_list(self):
"""Refresh the list of credential files (useful if files are added/removed)"""
old_count = len(self.credentials_files)
self.load_credentials_list()
new_count = len(self.credentials_files)
if old_count != new_count:
print(f"Credential files updated: {old_count} -> {new_count}")
return len(self.credentials_files) > 0
def get_next_credentials(self):
"""Rotate to the next credential file and load it"""
if not self.credentials_files:
return None, None
# Get the next credential file in rotation
file_path = self.credentials_files[self.current_index]
self.current_index = (self.current_index + 1) % len(self.credentials_files)
try:
credentials = service_account.Credentials.from_service_account_file(file_path,scopes=['https://www.googleapis.com/auth/cloud-platform'])
project_id = credentials.project_id
print(f"Loaded credentials from {file_path} for project: {project_id}")
self.credentials = credentials
self.project_id = project_id
return credentials, project_id
except Exception as e:
print(f"Error loading credentials from {file_path}: {e}")
# Try the next file if this one fails
if len(self.credentials_files) > 1:
print("Trying next credential file...")
return self.get_next_credentials()
return None, None
def get_random_credentials(self):
"""Get a random credential file and load it"""
if not self.credentials_files:
return None, None
# Choose a random credential file
file_path = random.choice(self.credentials_files)
try:
credentials = service_account.Credentials.from_service_account_file(file_path,scopes=['https://www.googleapis.com/auth/cloud-platform'])
project_id = credentials.project_id
print(f"Loaded credentials from {file_path} for project: {project_id}")
self.credentials = credentials
self.project_id = project_id
return credentials, project_id
except Exception as e:
print(f"Error loading credentials from {file_path}: {e}")
# Try another random file if this one fails
if len(self.credentials_files) > 1:
print("Trying another credential file...")
return self.get_random_credentials()
return None, None
# Initialize the credential manager
credential_manager = CredentialManager()
# Define data models
class ImageUrl(BaseModel):
url: str
class ContentPartImage(BaseModel):
type: Literal["image_url"]
image_url: ImageUrl
class ContentPartText(BaseModel):
type: Literal["text"]
text: str
class OpenAIMessage(BaseModel):
role: str
content: Union[str, List[Union[ContentPartText, ContentPartImage, Dict[str, Any]]]]
class OpenAIRequest(BaseModel):
model: str
messages: List[OpenAIMessage]
temperature: Optional[float] = 1.0
max_tokens: Optional[int] = None
top_p: Optional[float] = 1.0
top_k: Optional[int] = None
stream: Optional[bool] = False
stop: Optional[List[str]] = None
presence_penalty: Optional[float] = None
frequency_penalty: Optional[float] = None
seed: Optional[int] = None
logprobs: Optional[int] = None
response_logprobs: Optional[bool] = None
n: Optional[int] = None # Maps to candidate_count in Vertex AI
# Allow extra fields to pass through without causing validation errors
model_config = ConfigDict(extra='allow')
# Configure authentication
def init_vertex_ai():
global client # Ensure we modify the global client variable
try:
# Priority 1: Check for credentials JSON content in environment variable (Hugging Face)
credentials_json_str = os.environ.get("GOOGLE_CREDENTIALS_JSON")
if credentials_json_str:
try:
# Try to parse the JSON
try:
credentials_info = json.loads(credentials_json_str)
# Check if the parsed JSON has the expected structure
if not isinstance(credentials_info, dict):
# print(f"ERROR: Parsed JSON is not a dictionary, type: {type(credentials_info)}") # Removed
raise ValueError("Credentials JSON must be a dictionary")
# Check for required fields in the service account JSON
required_fields = ["type", "project_id", "private_key_id", "private_key", "client_email"]
missing_fields = [field for field in required_fields if field not in credentials_info]
if missing_fields:
# print(f"ERROR: Missing required fields in credentials JSON: {missing_fields}") # Removed
raise ValueError(f"Credentials JSON missing required fields: {missing_fields}")
except json.JSONDecodeError as json_err:
print(f"ERROR: Failed to parse GOOGLE_CREDENTIALS_JSON as JSON: {json_err}")
raise
# Create credentials from the parsed JSON info (json.loads should handle \n)
try:
credentials = service_account.Credentials.from_service_account_info(
credentials_info, # Pass the dictionary directly
scopes=['https://www.googleapis.com/auth/cloud-platform']
)
project_id = credentials.project_id
print(f"Successfully created credentials object for project: {project_id}")
except Exception as cred_err:
print(f"ERROR: Failed to create credentials from service account info: {cred_err}")
raise
# Initialize the client with the credentials
try:
client = genai.Client(vertexai=True, credentials=credentials, project=project_id, location="us-central1")
print(f"Initialized Vertex AI using GOOGLE_CREDENTIALS_JSON env var for project: {project_id}")
except Exception as client_err:
print(f"ERROR: Failed to initialize genai.Client: {client_err}")
raise
return True
except Exception as e:
print(f"Error loading credentials from GOOGLE_CREDENTIALS_JSON: {e}")
# Fall through to other methods if this fails
# Priority 2: Try to use the credential manager to get credentials from files
print(f"Trying credential manager (directory: {credential_manager.credentials_dir})")
credentials, project_id = credential_manager.get_next_credentials()
if credentials and project_id:
try:
client = genai.Client(vertexai=True, credentials=credentials, project=project_id, location="us-central1")
print(f"Initialized Vertex AI using Credential Manager for project: {project_id}")
return True
except Exception as e:
print(f"ERROR: Failed to initialize client with credentials from Credential Manager: {e}")
# Priority 3: Fall back to GOOGLE_APPLICATION_CREDENTIALS environment variable (file path)
file_path = os.environ.get("GOOGLE_APPLICATION_CREDENTIALS")
if file_path:
print(f"Checking GOOGLE_APPLICATION_CREDENTIALS file path: {file_path}")
if os.path.exists(file_path):
try:
print(f"File exists, attempting to load credentials")
credentials = service_account.Credentials.from_service_account_file(
file_path,
scopes=['https://www.googleapis.com/auth/cloud-platform']
)
project_id = credentials.project_id
print(f"Successfully loaded credentials from file for project: {project_id}")
try:
client = genai.Client(vertexai=True, credentials=credentials, project=project_id, location="us-central1")
print(f"Initialized Vertex AI using GOOGLE_APPLICATION_CREDENTIALS file path for project: {project_id}")
return True
except Exception as client_err:
print(f"ERROR: Failed to initialize client with credentials from file: {client_err}")
except Exception as e:
print(f"ERROR: Failed to load credentials from GOOGLE_APPLICATION_CREDENTIALS path {file_path}: {e}")
else:
print(f"ERROR: GOOGLE_APPLICATION_CREDENTIALS file does not exist at path: {file_path}")
# If none of the methods worked
print(f"ERROR: No valid credentials found. Tried GOOGLE_CREDENTIALS_JSON, Credential Manager ({credential_manager.credentials_dir}), and GOOGLE_APPLICATION_CREDENTIALS.")
return False
except Exception as e:
print(f"Error initializing authentication: {e}")
return False
# Initialize Vertex AI at startup
@app.on_event("startup")
async def startup_event():
if not init_vertex_ai():
print("WARNING: Failed to initialize Vertex AI authentication")
# Conversion functions
def create_gemini_prompt(messages: List[OpenAIMessage]) -> Union[str, List[Any]]:
"""
Convert OpenAI messages to Gemini format.
Returns either a string prompt or a list of content parts if images are present.
"""
# Check if any message contains image content
has_images = False
for message in messages:
if isinstance(message.content, list):
for part in message.content:
if isinstance(part, dict) and part.get('type') == 'image_url':
has_images = True
break
elif isinstance(part, ContentPartImage):
has_images = True
break
if has_images:
break
# If no images, use the text-only format
if not has_images:
prompt = ""
# Extract system message if present
system_message = None
for message in messages:
if message.role == "system":
# Handle both string and list[dict] content types
if isinstance(message.content, str):
system_message = message.content
elif isinstance(message.content, list) and message.content and isinstance(message.content[0], dict) and 'text' in message.content[0]:
system_message = message.content[0]['text']
else:
# Handle unexpected format or raise error? For now, assume it's usable or skip.
system_message = str(message.content) # Fallback, might need refinement
break
# If system message exists, prepend it
if system_message:
prompt += f"System: {system_message}\n\n"
# Add other messages
for message in messages:
if message.role == "system":
continue # Already handled
# Handle both string and list[dict] content types
content_text = ""
if isinstance(message.content, str):
content_text = message.content
elif isinstance(message.content, list) and message.content and isinstance(message.content[0], dict) and 'text' in message.content[0]:
content_text = message.content[0]['text']
else:
# Fallback for unexpected format
content_text = str(message.content)
if message.role == "user":
prompt += f"Human: {content_text}\n"
elif message.role == "assistant":
prompt += f"AI: {content_text}\n"
# Add final AI prompt if last message was from user
if messages[-1].role == "user":
prompt += "AI: "
return prompt
# If images are present, create a list of content parts
gemini_contents = []
# Extract system message if present and add it first
for message in messages:
if message.role == "system":
if isinstance(message.content, str):
gemini_contents.append(f"System: {message.content}")
elif isinstance(message.content, list):
# Extract text from system message
system_text = ""
for part in message.content:
if isinstance(part, dict) and part.get('type') == 'text':
system_text += part.get('text', '')
elif isinstance(part, ContentPartText):
system_text += part.text
if system_text:
gemini_contents.append(f"System: {system_text}")
break
# Process user and assistant messages
for message in messages:
if message.role == "system":
continue # Already handled
# For string content, add as text
if isinstance(message.content, str):
prefix = "Human: " if message.role == "user" else "AI: "
gemini_contents.append(f"{prefix}{message.content}")
# For list content, process each part
elif isinstance(message.content, list):
# First collect all text parts
text_content = ""
for part in message.content:
# Handle text parts
if isinstance(part, dict) and part.get('type') == 'text':
text_content += part.get('text', '')
elif isinstance(part, ContentPartText):
text_content += part.text
# Add the combined text content if any
if text_content:
prefix = "Human: " if message.role == "user" else "AI: "
gemini_contents.append(f"{prefix}{text_content}")
# Then process image parts
for part in message.content:
# Handle image parts
if isinstance(part, dict) and part.get('type') == 'image_url':
image_url = part.get('image_url', {}).get('url', '')
if image_url.startswith('data:'):
# Extract mime type and base64 data
mime_match = re.match(r'data:([^;]+);base64,(.+)', image_url)
if mime_match:
mime_type, b64_data = mime_match.groups()
image_bytes = base64.b64decode(b64_data)
gemini_contents.append(types.Part.from_bytes(data=image_bytes, mime_type=mime_type))
elif isinstance(part, ContentPartImage):
image_url = part.image_url.url
if image_url.startswith('data:'):
# Extract mime type and base64 data
mime_match = re.match(r'data:([^;]+);base64,(.+)', image_url)
if mime_match:
mime_type, b64_data = mime_match.groups()
image_bytes = base64.b64decode(b64_data)
gemini_contents.append(types.Part.from_bytes(data=image_bytes, mime_type=mime_type))
return gemini_contents
def create_generation_config(request: OpenAIRequest) -> Dict[str, Any]:
config = {}
# Basic parameters that were already supported
if request.temperature is not None:
config["temperature"] = request.temperature
if request.max_tokens is not None:
config["max_output_tokens"] = request.max_tokens
if request.top_p is not None:
config["top_p"] = request.top_p
if request.top_k is not None:
config["top_k"] = request.top_k
if request.stop is not None:
config["stop_sequences"] = request.stop
# Additional parameters with direct mappings
if request.presence_penalty is not None:
config["presence_penalty"] = request.presence_penalty
if request.frequency_penalty is not None:
config["frequency_penalty"] = request.frequency_penalty
if request.seed is not None:
config["seed"] = request.seed
if request.logprobs is not None:
config["logprobs"] = request.logprobs
if request.response_logprobs is not None:
config["response_logprobs"] = request.response_logprobs
# Map OpenAI's 'n' parameter to Vertex AI's 'candidate_count'
if request.n is not None:
config["candidate_count"] = request.n
return config
# Response format conversion
def convert_to_openai_format(gemini_response, model: str) -> Dict[str, Any]:
# Handle multiple candidates if present
if hasattr(gemini_response, 'candidates') and len(gemini_response.candidates) > 1:
choices = []
for i, candidate in enumerate(gemini_response.candidates):
choices.append({
"index": i,
"message": {
"role": "assistant",
"content": candidate.text
},
"finish_reason": "stop"
})
else:
# Handle single response (backward compatibility)
choices = [
{
"index": 0,
"message": {
"role": "assistant",
"content": gemini_response.text
},
"finish_reason": "stop"
}
]
# Include logprobs if available
for i, choice in enumerate(choices):
if hasattr(gemini_response, 'candidates') and i < len(gemini_response.candidates):
candidate = gemini_response.candidates[i]
if hasattr(candidate, 'logprobs'):
choice["logprobs"] = candidate.logprobs
return {
"id": f"chatcmpl-{int(time.time())}",
"object": "chat.completion",
"created": int(time.time()),
"model": model,
"choices": choices,
"usage": {
"prompt_tokens": 0, # Would need token counting logic
"completion_tokens": 0,
"total_tokens": 0
}
}
def convert_chunk_to_openai(chunk, model: str, response_id: str, candidate_index: int = 0) -> str:
chunk_content = chunk.text if hasattr(chunk, 'text') else ""
chunk_data = {
"id": response_id,
"object": "chat.completion.chunk",
"created": int(time.time()),
"model": model,
"choices": [
{
"index": candidate_index,
"delta": {
"content": chunk_content
},
"finish_reason": None
}
]
}
# Add logprobs if available
if hasattr(chunk, 'logprobs'):
chunk_data["choices"][0]["logprobs"] = chunk.logprobs
return f"data: {json.dumps(chunk_data)}\n\n"
def create_final_chunk(model: str, response_id: str, candidate_count: int = 1) -> str:
choices = []
for i in range(candidate_count):
choices.append({
"index": i,
"delta": {},
"finish_reason": "stop"
})
final_chunk = {
"id": response_id,
"object": "chat.completion.chunk",
"created": int(time.time()),
"model": model,
"choices": choices
}
return f"data: {json.dumps(final_chunk)}\n\n"
# /v1/models endpoint
@app.get("/v1/models")
async def list_models(api_key: str = Depends(get_api_key)):
# Based on current information for Vertex AI models
models = [
{
"id": "gemini-2.5-pro-exp-03-25",
"object": "model",
"created": int(time.time()),
"owned_by": "google",
"permission": [],
"root": "gemini-2.5-pro-exp-03-25",
"parent": None,
},
{
"id": "gemini-2.5-pro-exp-03-25-search",
"object": "model",
"created": int(time.time()),
"owned_by": "google",
"permission": [],
"root": "gemini-2.5-pro-exp-03-25",
"parent": None,
},
{
"id": "gemini-2.0-flash",
"object": "model",
"created": int(time.time()),
"owned_by": "google",
"permission": [],
"root": "gemini-2.0-flash",
"parent": None,
},
{
"id": "gemini-2.0-flash-search",
"object": "model",
"created": int(time.time()),
"owned_by": "google",
"permission": [],
"root": "gemini-2.0-flash",
"parent": None,
},
{
"id": "gemini-2.0-flash-lite",
"object": "model",
"created": int(time.time()),
"owned_by": "google",
"permission": [],
"root": "gemini-2.0-flash-lite",
"parent": None,
},
{
"id": "gemini-2.0-flash-lite-search",
"object": "model",
"created": int(time.time()),
"owned_by": "google",
"permission": [],
"root": "gemini-2.0-flash-lite",
"parent": None,
},
{
"id": "gemini-2.0-pro-exp-02-05",
"object": "model",
"created": int(time.time()),
"owned_by": "google",
"permission": [],
"root": "gemini-2.0-pro-exp-02-05",
"parent": None,
},
{
"id": "gemini-1.5-flash",
"object": "model",
"created": int(time.time()),
"owned_by": "google",
"permission": [],
"root": "gemini-1.5-flash",
"parent": None,
},
{
"id": "gemini-1.5-flash-8b",
"object": "model",
"created": int(time.time()),
"owned_by": "google",
"permission": [],
"root": "gemini-1.5-flash-8b",
"parent": None,
},
{
"id": "gemini-1.5-pro",
"object": "model",
"created": int(time.time()),
"owned_by": "google",
"permission": [],
"root": "gemini-1.5-pro",
"parent": None,
},
{
"id": "gemini-1.0-pro-002",
"object": "model",
"created": int(time.time()),
"owned_by": "google",
"permission": [],
"root": "gemini-1.0-pro-002",
"parent": None,
},
{
"id": "gemini-1.0-pro-vision-001",
"object": "model",
"created": int(time.time()),
"owned_by": "google",
"permission": [],
"root": "gemini-1.0-pro-vision-001",
"parent": None,
},
{
"id": "gemini-embedding-exp",
"object": "model",
"created": int(time.time()),
"owned_by": "google",
"permission": [],
"root": "gemini-embedding-exp",
"parent": None,
}
]
return {"object": "list", "data": models}
# Main chat completion endpoint
# OpenAI-compatible error response
def create_openai_error_response(status_code: int, message: str, error_type: str) -> Dict[str, Any]:
return {
"error": {
"message": message,
"type": error_type,
"code": status_code,
"param": None,
}
}
@app.post("/v1/chat/completions")
async def chat_completions(request: OpenAIRequest, api_key: str = Depends(get_api_key)):
try:
# Validate model availability
models_response = await list_models()
if not request.model or not any(model["id"] == request.model for model in models_response.get("data", [])):
error_response = create_openai_error_response(
400, f"Model '{request.model}' not found", "invalid_request_error"
)
return JSONResponse(status_code=400, content=error_response)
# Check if this is a grounded search model
is_grounded_search = request.model.endswith("-search")
# Extract the base model name (remove -search suffix if present)
gemini_model = request.model.replace("-search", "") if is_grounded_search else request.model
# Create generation config
generation_config = create_generation_config(request)
# Use the globally initialized client (from startup)
global client
if client is None:
# This should ideally not happen if startup was successful
error_response = create_openai_error_response(
500, "Vertex AI client not initialized", "server_error"
)
return JSONResponse(status_code=500, content=error_response)
print(f"Using globally initialized client.")
# Initialize Gemini model
search_tool = types.Tool(google_search=types.GoogleSearch())
safety_settings = [
types.SafetySetting(
category="HARM_CATEGORY_HATE_SPEECH",
threshold="OFF"
),types.SafetySetting(
category="HARM_CATEGORY_DANGEROUS_CONTENT",
threshold="OFF"
),types.SafetySetting(
category="HARM_CATEGORY_SEXUALLY_EXPLICIT",
threshold="OFF"
),types.SafetySetting(
category="HARM_CATEGORY_HARASSMENT",
threshold="OFF"
)]
generation_config["safety_settings"] = safety_settings
if is_grounded_search:
generation_config["tools"] = [search_tool]
# Create prompt from messages
prompt = create_gemini_prompt(request.messages)
if request.stream:
# Handle streaming response
async def stream_generator():
response_id = f"chatcmpl-{int(time.time())}"
candidate_count = request.n or 1
try:
# For streaming, we can only handle one candidate at a time
# If multiple candidates are requested, we'll generate them sequentially
for candidate_index in range(candidate_count):
# Generate content with streaming
# Handle both string and list content formats (for images)
responses = client.models.generate_content_stream(
model=gemini_model,
contents=prompt, # This can be either a string or a list of content parts
config=generation_config,
)
# Convert and yield each chunk
for response in responses:
yield convert_chunk_to_openai(response, request.model, response_id, candidate_index)
# Send final chunk with all candidates
yield create_final_chunk(request.model, response_id, candidate_count)
yield "data: [DONE]\n\n"
except Exception as stream_error:
# Format streaming errors in SSE format
error_msg = f"Error during streaming: {str(stream_error)}"
print(error_msg)
error_response = create_openai_error_response(500, error_msg, "server_error")
yield f"data: {json.dumps(error_response)}\n\n"
yield "data: [DONE]\n\n"
return StreamingResponse(
stream_generator(),
media_type="text/event-stream"
)
else:
# Handle non-streaming response
try:
# If multiple candidates are requested, set candidate_count
if request.n and request.n > 1:
# Make sure generation_config has candidate_count set
if "candidate_count" not in generation_config:
generation_config["candidate_count"] = request.n
# Handle both string and list content formats (for images)
response = client.models.generate_content(
model=gemini_model,
contents=prompt, # This can be either a string or a list of content parts
config=generation_config,
)
openai_response = convert_to_openai_format(response, request.model)
return JSONResponse(content=openai_response)
except Exception as generate_error:
error_msg = f"Error generating content: {str(generate_error)}"
print(error_msg)
error_response = create_openai_error_response(500, error_msg, "server_error")
return JSONResponse(status_code=500, content=error_response)
except Exception as e:
error_msg = f"Error processing request: {str(e)}"
print(error_msg)
error_response = create_openai_error_response(500, error_msg, "server_error")
return JSONResponse(status_code=500, content=error_response)
# Health check endpoint
@app.get("/health")
def health_check(api_key: str = Depends(get_api_key)):
# Refresh the credentials list to get the latest status
credential_manager.refresh_credentials_list()
return {
"status": "ok",
"credentials": {
"available": len(credential_manager.credentials_files),
"files": [os.path.basename(f) for f in credential_manager.credentials_files],
"current_index": credential_manager.current_index
}
}
# Diagnostic endpoint for troubleshooting credential issues
@app.get("/debug/credentials")
def debug_credentials(api_key: str = Depends(get_api_key)):
"""
Diagnostic endpoint to check credential configuration without actually authenticating.
This helps troubleshoot issues with credential setup, especially on Hugging Face.
"""
# Check GOOGLE_CREDENTIALS_JSON
creds_json = os.environ.get("GOOGLE_CREDENTIALS_JSON")
creds_json_status = {
"present": creds_json is not None,
"length": len(creds_json) if creds_json else 0,
"parse_status": "not_attempted"
}
# Try to parse the JSON if present
if creds_json:
try:
creds_info = json.loads(creds_json)
# Check for required fields
required_fields = ["type", "project_id", "private_key_id", "private_key", "client_email"]
missing_fields = [field for field in required_fields if field not in creds_info]
creds_json_status.update({
"parse_status": "success",
"is_dict": isinstance(creds_info, dict),
"missing_required_fields": missing_fields,
"project_id": creds_info.get("project_id", "not_found"),
# Include a safe sample of the private key to check if it's properly formatted
"private_key_sample": creds_info.get("private_key", "not_found")[:10] + "..." if "private_key" in creds_info else "not_found"
})
except json.JSONDecodeError as e:
creds_json_status.update({
"parse_status": "error",
"error": str(e),
"sample": creds_json[:20] + "..." if len(creds_json) > 20 else creds_json
})
# Check credential files
credential_manager.refresh_credentials_list()
# Check GOOGLE_APPLICATION_CREDENTIALS
app_creds_path = os.environ.get("GOOGLE_APPLICATION_CREDENTIALS")
app_creds_status = {
"present": app_creds_path is not None,
"path": app_creds_path,
"exists": os.path.exists(app_creds_path) if app_creds_path else False
}
return {
"environment": {
"GOOGLE_CREDENTIALS_JSON": creds_json_status,
"CREDENTIALS_DIR": {
"path": credential_manager.credentials_dir,
"exists": os.path.exists(credential_manager.credentials_dir),
"files_found": len(credential_manager.credentials_files),
"files": [os.path.basename(f) for f in credential_manager.credentials_files]
},
"GOOGLE_APPLICATION_CREDENTIALS": app_creds_status
},
"recommendations": [
"Ensure GOOGLE_CREDENTIALS_JSON contains the full, properly formatted JSON content of your service account key",
"Check for any special characters or line breaks that might need proper escaping",
"Verify that the service account has the necessary permissions for Vertex AI"
]
}