File size: 36,095 Bytes
2b28cab
 
 
 
 
 
 
 
 
 
 
 
 
 
573cb3b
2b28cab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
573cb3b
 
 
 
 
 
 
 
 
2b28cab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
573cb3b
 
 
 
 
2b28cab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
573cb3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b28cab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
573cb3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b28cab
573cb3b
2b28cab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
573cb3b
 
 
 
2b28cab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
573cb3b
2b28cab
 
 
 
 
573cb3b
2b28cab
 
 
573cb3b
2b28cab
 
 
 
573cb3b
2b28cab
 
 
 
573cb3b
2b28cab
 
 
 
 
 
573cb3b
 
 
 
2b28cab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
573cb3b
 
 
2b28cab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
573cb3b
 
 
2b28cab
 
 
 
 
 
 
 
 
573cb3b
 
2b28cab
 
 
 
573cb3b
2b28cab
573cb3b
 
2b28cab
 
 
573cb3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b28cab
 
 
 
573cb3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b28cab
573cb3b
 
 
 
 
 
 
 
 
 
2b28cab
573cb3b
 
2b28cab
573cb3b
 
 
2b28cab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
573cb3b
 
 
2b28cab
 
 
573cb3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b28cab
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
from flask import Flask, request, jsonify, Response, render_template_string
import requests
import time
import json
import uuid
import random
import io
import re
from functools import wraps
import hashlib
import jwt  
import os
import threading
from datetime import datetime
import tiktoken  # 导入tiktoken来计算token数量

app = Flask(__name__)


API_ENDPOINT_URL = "https://abacus.ai/api/v0/describeDeployment"
MODEL_LIST_URL = "https://abacus.ai/api/v0/listExternalApplications"
CHAT_URL = "https://apps.abacus.ai/api/_chatLLMSendMessageSSE"
USER_INFO_URL = "https://abacus.ai/api/v0/_getUserInfo"


USER_AGENTS = [
    "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/116.0.0.0 Safari/537.36"
]


PASSWORD = None
USER_NUM = 0
USER_DATA = []
CURRENT_USER = -1
MODELS = set()


TRACE_ID = "3042e28b3abf475d8d973c7e904935af"
SENTRY_TRACE = f"{TRACE_ID}-80d9d2538b2682d0"


# 添加一个计数器记录健康检查次数
health_check_counter = 0


# 添加统计变量
model_usage_stats = {}  # 模型使用次数统计
total_tokens = {
    "prompt": 0,       # 输入token统计
    "completion": 0,   # 输出token统计
    "total": 0         # 总token统计
}


# HTML模板
INDEX_HTML = """
<!DOCTYPE html>
<html lang="zh-CN">
<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>Abacus Chat Proxy</title>
    <style>
        * {
            margin: 0;
            padding: 0;
            box-sizing: border-box;
        }
        body {
            font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, "Helvetica Neue", Arial, sans-serif;
            line-height: 1.6;
            color: #333;
            background: #f5f5f5;
            min-height: 100vh;
            display: flex;
            flex-direction: column;
            align-items: center;
            padding: 2rem;
        }
        .container {
            max-width: 800px;
            width: 100%;
            background: white;
            padding: 2rem;
            border-radius: 12px;
            box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
        }
        h1 {
            color: #2c3e50;
            margin-bottom: 1rem;
            text-align: center;
            font-size: 2.5rem;
        }
        h2 {
            color: #3a4a5c;
            margin: 1.5rem 0 1rem;
            font-size: 1.5rem;
        }
        .status-card {
            background: #f8f9fa;
            border-radius: 8px;
            padding: 1.5rem;
            margin: 1.5rem 0;
        }
        .status-item {
            display: flex;
            justify-content: space-between;
            align-items: center;
            padding: 0.5rem 0;
            border-bottom: 1px solid #dee2e6;
        }
        .status-item:last-child {
            border-bottom: none;
        }
        .status-label {
            color: #6c757d;
            font-weight: 500;
        }
        .status-value {
            color: #28a745;
            font-weight: 600;
        }
        .status-value.warning {
            color: #ffc107;
        }
        .footer {
            margin-top: 2rem;
            text-align: center;
            color: #6c757d;
        }
        .models-list {
            list-style: none;
            display: flex;
            flex-wrap: wrap;
            gap: 0.5rem;
            margin-top: 0.5rem;
        }
        .model-tag {
            background: #e9ecef;
            padding: 0.25rem 0.75rem;
            border-radius: 16px;
            font-size: 0.875rem;
            color: #495057;
        }
        .endpoints {
            margin-top: 2rem;
        }
        .endpoint-item {
            background: #f8f9fa;
            padding: 1rem;
            border-radius: 8px;
            margin-bottom: 1rem;
        }
        .endpoint-url {
            font-family: monospace;
            background: #e9ecef;
            padding: 0.25rem 0.5rem;
            border-radius: 4px;
        }
        .usage-table {
            width: 100%;
            border-collapse: collapse;
            margin-top: 1rem;
        }
        .usage-table th, .usage-table td {
            padding: 0.5rem;
            text-align: left;
            border-bottom: 1px solid #dee2e6;
        }
        .usage-table th {
            background-color: #e9ecef;
            font-weight: 600;
            color: #495057;
        }
        .usage-table tbody tr:hover {
            background-color: #f1f3f5;
        }
        .token-count {
            font-family: monospace;
            color: #0366d6;
        }
        .call-count {
            font-family: monospace;
            color: #28a745;
        }
        @media (max-width: 768px) {
            .container {
                padding: 1rem;
            }
            h1 {
                font-size: 2rem;
            }
        }
    </style>
</head>
<body>
    <div class="container">
        <h1>🤖 Abacus Chat Proxy</h1>
        
        <div class="status-card">
            <div class="status-item">
                <span class="status-label">服务状态</span>
                <span class="status-value">运行中</span>
            </div>
            <div class="status-item">
                <span class="status-label">运行时间</span>
                <span class="status-value">{{ uptime }}</span>
            </div>
            <div class="status-item">
                <span class="status-label">健康检查次数</span>
                <span class="status-value">{{ health_checks }}</span>
            </div>
            <div class="status-item">
                <span class="status-label">已配置用户数</span>
                <span class="status-value">{{ user_count }}</span>
            </div>
            <div class="status-item">
                <span class="status-label">可用模型</span>
                <div class="models-list">
                    {% for model in models %}
                    <span class="model-tag">{{ model }}</span>
                    {% endfor %}
                </div>
            </div>
        </div>

        <h2>🔍 模型使用统计</h2>
        <div class="status-card">
            <div class="status-item">
                <span class="status-label">总Token使用量</span>
                <span class="status-value token-count">{{ total_tokens.total|int }}</span>
            </div>
            <div class="status-item">
                <span class="status-label">输入Token</span>
                <span class="status-value token-count">{{ total_tokens.prompt|int }}</span>
            </div>
            <div class="status-item">
                <span class="status-label">输出Token</span>
                <span class="status-value token-count">{{ total_tokens.completion|int }}</span>
            </div>
            
            <table class="usage-table">
                <thead>
                    <tr>
                        <th>模型</th>
                        <th>调用次数</th>
                        <th>输入Token</th>
                        <th>输出Token</th>
                        <th>总Token</th>
                    </tr>
                </thead>
                <tbody>
                    {% for model, stats in model_stats.items() %}
                    <tr>
                        <td>{{ model }}</td>
                        <td class="call-count">{{ stats.count }}</td>
                        <td class="token-count">{{ stats.prompt_tokens|int }}</td>
                        <td class="token-count">{{ stats.completion_tokens|int }}</td>
                        <td class="token-count">{{ stats.total_tokens|int }}</td>
                    </tr>
                    {% endfor %}
                </tbody>
            </table>
        </div>

        <div class="endpoints">
            <h2>📡 API端点</h2>
            <div class="endpoint-item">
                <p>获取模型列表:</p>
                <code class="endpoint-url">GET /v1/models</code>
            </div>
            <div class="endpoint-item">
                <p>聊天补全:</p>
                <code class="endpoint-url">POST /v1/chat/completions</code>
            </div>
            <div class="endpoint-item">
                <p>健康检查:</p>
                <code class="endpoint-url">GET /health</code>
            </div>
        </div>

        <div class="footer">
            <p>© {{ year }} Abacus Chat Proxy. 保持简单,保持可靠。</p>
        </div>
    </div>
</body>
</html>
"""

# 记录启动时间
START_TIME = datetime.now()


def resolve_config():
    # 从环境变量读取多组配置
    config_list = []
    i = 1
    while True:
        covid = os.environ.get(f"covid_{i}")
        cookie = os.environ.get(f"cookie_{i}")
        if not (covid and cookie):
            break
        config_list.append({
            "conversation_id": covid,
            "cookies": cookie
        })
        i += 1
    
    # 如果环境变量存在配置,使用环境变量的配置
    if config_list:
        return config_list
    
    # 如果环境变量不存在,从文件读取
    try:
        with open("config.json", "r") as f:
            config = json.load(f)
        config_list = config.get("config")
        return config_list
    except FileNotFoundError:
        print("未找到config.json文件")
        return []
    except json.JSONDecodeError:
        print("config.json格式错误")
        return []


def get_password():
    global PASSWORD
    # 从环境变量读取密码
    env_password = os.environ.get("password")
    if env_password:
        PASSWORD = hashlib.sha256(env_password.encode()).hexdigest()
        return

    # 如果环境变量不存在,从文件读取
    try:
        with open("password.txt", "r") as f:
            PASSWORD = f.read().strip()
    except FileNotFoundError:
        with open("password.txt", "w") as f:
            PASSWORD = None


def require_auth(f):
    @wraps(f)
    def decorated(*args, **kwargs):
        if not PASSWORD:
            return f(*args, **kwargs)
        auth = request.authorization
        if not auth or not check_auth(auth.token):
            return jsonify({"error": "Unauthorized access"}), 401
        return f(*args, **kwargs)

    return decorated


def check_auth(token):
    return hashlib.sha256(token.encode()).hexdigest() == PASSWORD


def is_token_expired(token):
    if not token:
        return True
    
    try:
        # Malkodi tokenon sen validigo de subskribo
        payload = jwt.decode(token, options={"verify_signature": False})
        # Akiru eksvalidiĝan tempon, konsideru eksvalidiĝinta 5 minutojn antaŭe
        return payload.get('exp', 0) - time.time() < 300
    except:
        return True


def refresh_token(session, cookies):
    """Uzu kuketon por refreŝigi session token, nur revenigu novan tokenon"""
    headers = {
        "accept": "application/json, text/plain, */*",
        "accept-language": "zh-CN,zh;q=0.9",
        "content-type": "application/json",
        "reai-ui": "1",
        "sec-ch-ua": "\"Chromium\";v=\"116\", \"Not)A;Brand\";v=\"24\", \"Google Chrome\";v=\"116\"",
        "sec-ch-ua-mobile": "?0",
        "sec-ch-ua-platform": "\"Windows\"",
        "sec-fetch-dest": "empty",
        "sec-fetch-mode": "cors",
        "sec-fetch-site": "same-site",
        "x-abacus-org-host": "apps",
        "user-agent": random.choice(USER_AGENTS),
        "origin": "https://apps.abacus.ai",
        "referer": "https://apps.abacus.ai/",
        "cookie": cookies
    }
    
    try:
        response = session.post(
            USER_INFO_URL,
            headers=headers,
            json={},
            cookies=None
        )
        
        if response.status_code == 200:
            response_data = response.json()
            if response_data.get('success') and 'sessionToken' in response_data.get('result', {}):
                return response_data['result']['sessionToken']
            else:
                print(f"刷新token失败: {response_data.get('error', '未知错误')}")
                return None
        else:
            print(f"刷新token失败,状态码: {response.status_code}")
            return None
    except Exception as e:
        print(f"刷新token异常: {e}")
        return None


def get_model_map(session, cookies, session_token):
    """Akiru disponeblan modelan liston kaj ĝiajn mapajn rilatojn"""
    headers = {
        "accept": "application/json, text/plain, */*",
        "accept-language": "zh-CN,zh;q=0.9",
        "content-type": "application/json",
        "reai-ui": "1",
        "sec-ch-ua": "\"Chromium\";v=\"116\", \"Not)A;Brand\";v=\"24\", \"Google Chrome\";v=\"116\"",
        "sec-ch-ua-mobile": "?0",
        "sec-ch-ua-platform": "\"Windows\"",
        "sec-fetch-dest": "empty",
        "sec-fetch-mode": "cors",
        "sec-fetch-site": "same-site",
        "x-abacus-org-host": "apps",
        "user-agent": random.choice(USER_AGENTS),
        "origin": "https://apps.abacus.ai",
        "referer": "https://apps.abacus.ai/",
        "cookie": cookies
    }
    
    if session_token:
        headers["session-token"] = session_token
    
    model_map = {}
    models_set = set()
    
    try:
        response = session.post(
            MODEL_LIST_URL,
            headers=headers,
            json={},
            cookies=None
        )
        
        if response.status_code != 200:
            print(f"获取模型列表失败,状态码: {response.status_code}")
            raise Exception("API请求失败")
        
        data = response.json()
        if not data.get('success'):
            print(f"获取模型列表失败: {data.get('error', '未知错误')}")
            raise Exception("API返回错误")
        
        applications = []
        if isinstance(data.get('result'), dict):
            applications = data.get('result', {}).get('externalApplications', [])
        elif isinstance(data.get('result'), list):
            applications = data.get('result', [])
        
        for app in applications:
            app_name = app.get('name', '')
            app_id = app.get('externalApplicationId', '')
            prediction_overrides = app.get('predictionOverrides', {})
            llm_name = prediction_overrides.get('llmName', '') if prediction_overrides else ''
            
            if not (app_name and app_id and llm_name):
                continue
                
            model_name = app_name
            model_map[model_name] = (app_id, llm_name)
            models_set.add(model_name)
        
        if not model_map:
            raise Exception("未找到任何可用模型")
        
        return model_map, models_set
    
    except Exception as e:
        print(f"获取模型列表异常: {e}")
        raise


def init_session():
    get_password()
    global USER_NUM, MODELS, USER_DATA
    config_list = resolve_config()
    user_num = len(config_list)
    all_models = set()
    
    for i in range(user_num):
        user = config_list[i]
        cookies = user.get("cookies")
        conversation_id = user.get("conversation_id")
        session = requests.Session()
        
        session_token = refresh_token(session, cookies)
        if not session_token:
            print(f"无法获取cookie {i+1}的token")
            continue
        
        try:
            model_map, models_set = get_model_map(session, cookies, session_token)
            all_models.update(models_set)
            USER_DATA.append((session, cookies, session_token, conversation_id, model_map))
        except Exception as e:
            print(f"配置用户 {i+1} 失败: {e}")
            continue
    
    USER_NUM = len(USER_DATA)
    if USER_NUM == 0:
        print("No user available, exiting...")
        exit(1)
    
    MODELS = all_models
    print(f"启动完成,共配置 {USER_NUM} 个用户")


def update_cookie(session, cookies):
    cookie_jar = {}
    for key, value in session.cookies.items():
        cookie_jar[key] = value
    cookie_dict = {}
    for item in cookies.split(";"):
        key, value = item.strip().split("=", 1)
        cookie_dict[key] = value
    cookie_dict.update(cookie_jar)
    cookies = "; ".join([f"{key}={value}" for key, value in cookie_dict.items()])
    return cookies


user_data = init_session()


@app.route("/v1/models", methods=["GET"])
@require_auth
def get_models():
    if len(MODELS) == 0:
        return jsonify({"error": "No models available"}), 500
    model_list = []
    for model in MODELS:
        model_list.append(
            {
                "id": model,
                "object": "model",
                "created": int(time.time()),
                "owned_by": "Elbert",
                "name": model,
            }
        )
    return jsonify({"object": "list", "data": model_list})


@app.route("/v1/chat/completions", methods=["POST"])
@require_auth
def chat_completions():
    openai_request = request.get_json()
    stream = openai_request.get("stream", False)
    messages = openai_request.get("messages")
    if messages is None:
        return jsonify({"error": "Messages is required", "status": 400}), 400
    model = openai_request.get("model")
    if model not in MODELS:
        return (
            jsonify(
                {
                    "error": "Model not available, check if it is configured properly",
                    "status": 404,
                }
            ),
            404,
        )
    message = format_message(messages)
    think = (
        openai_request.get("think", False) if model == "Claude Sonnet 3.7" else False
    )
    return (
        send_message(message, model, think)
        if stream
        else send_message_non_stream(message, model, think)
    )


def get_user_data():
    global CURRENT_USER
    CURRENT_USER = (CURRENT_USER + 1) % USER_NUM
    print(f"使用配置 {CURRENT_USER+1}")
    
    # Akiru uzantajn datumojn
    session, cookies, session_token, conversation_id, model_map = USER_DATA[CURRENT_USER]
    
    # Kontrolu ĉu la tokeno eksvalidiĝis, se jes, refreŝigu ĝin
    if is_token_expired(session_token):
        print(f"Cookie {CURRENT_USER+1}的token已过期或即将过期,正在刷新...")
        new_token = refresh_token(session, cookies)
        if new_token:
            # Ĝisdatigu la globale konservitan tokenon
            USER_DATA[CURRENT_USER] = (session, cookies, new_token, conversation_id, model_map)
            session_token = new_token
            print(f"成功更新token: {session_token[:15]}...{session_token[-15:]}")
        else:
            print(f"警告:无法刷新Cookie {CURRENT_USER+1}的token,继续使用当前token")
    
    return (session, cookies, session_token, conversation_id, model_map)


def generate_trace_id():
    """Generu novan trace_id kaj sentry_trace"""
    trace_id = str(uuid.uuid4()).replace('-', '')
    sentry_trace = f"{trace_id}-{str(uuid.uuid4())[:16]}"
    return trace_id, sentry_trace


def send_message(message, model, think=False):
    """Flua traktado kaj plusendo de mesaĝoj"""
    (session, cookies, session_token, conversation_id, model_map) = get_user_data()
    trace_id, sentry_trace = generate_trace_id()
    
    # 计算输入token
    prompt_tokens = num_tokens_from_string(message)
    completion_buffer = io.StringIO()  # 收集所有输出用于计算token
    
    headers = {
        "accept": "text/event-stream",
        "accept-language": "zh-CN,zh;q=0.9",
        "baggage": f"sentry-environment=production,sentry-release=975eec6685013679c139fc88db2c48e123d5c604,sentry-public_key=3476ea6df1585dd10e92cdae3a66ff49,sentry-trace_id={trace_id}",
        "content-type": "text/plain;charset=UTF-8",
        "cookie": cookies,
        "sec-ch-ua": "\"Chromium\";v=\"116\", \"Not)A;Brand\";v=\"24\", \"Google Chrome\";v=\"116\"",
        "sec-ch-ua-mobile": "?0",
        "sec-ch-ua-platform": "\"Windows\"",
        "sec-fetch-dest": "empty",
        "sec-fetch-mode": "cors",
        "sec-fetch-site": "same-origin",
        "sentry-trace": sentry_trace,
        "user-agent": random.choice(USER_AGENTS)
    }
    
    if session_token:
        headers["session-token"] = session_token
    
    payload = {
        "requestId": str(uuid.uuid4()),
        "deploymentConversationId": conversation_id,
        "message": message,
        "isDesktop": False,
        "chatConfig": {
            "timezone": "Asia/Shanghai",
            "language": "zh-CN"
        },
        "llmName": model_map[model][1],
        "externalApplicationId": model_map[model][0],
        "regenerate": True,
        "editPrompt": True
    }
    
    if think:
        payload["useThinking"] = think
    
    try:
        response = session.post(
            CHAT_URL,
            headers=headers,
            data=json.dumps(payload),
            stream=True
        )
        
        response.raise_for_status()
        
        def extract_segment(line_data):
            try:
                data = json.loads(line_data)
                if "segment" in data:
                    if isinstance(data["segment"], str):
                        return data["segment"]
                    elif isinstance(data["segment"], dict) and "segment" in data["segment"]:
                        return data["segment"]["segment"]
                return ""
            except:
                return ""
        
        def generate():
            id = ""
            think_state = 2
            
            yield "data: " + json.dumps({"object": "chat.completion.chunk", "choices": [{"delta": {"role": "assistant"}}]}) + "\n\n"
            
            for line in response.iter_lines():
                if line:
                    decoded_line = line.decode("utf-8")
                    try:
                        if think:
                            data = json.loads(decoded_line)
                            if data.get("type") != "text":
                                continue
                            elif think_state == 2:
                                id = data.get("messageId")
                                segment = "<think>\n" + data.get("segment", "")
                                completion_buffer.write(segment)  # 收集输出
                                yield f"data: {json.dumps({'object': 'chat.completion.chunk', 'choices': [{'delta': {'content': segment}}]})}\n\n"
                                think_state = 1
                            elif think_state == 1:
                                if data.get("messageId") != id:
                                    segment = data.get("segment", "")
                                    completion_buffer.write(segment)  # 收集输出
                                    yield f"data: {json.dumps({'object': 'chat.completion.chunk', 'choices': [{'delta': {'content': segment}}]})}\n\n"
                                else:
                                    segment = "\n</think>\n" + data.get("segment", "")
                                    completion_buffer.write(segment)  # 收集输出
                                    yield f"data: {json.dumps({'object': 'chat.completion.chunk', 'choices': [{'delta': {'content': segment}}]})}\n\n"
                                    think_state = 0
                            else:
                                segment = data.get("segment", "")
                                completion_buffer.write(segment)  # 收集输出
                                yield f"data: {json.dumps({'object': 'chat.completion.chunk', 'choices': [{'delta': {'content': segment}}]})}\n\n"
                        else:
                            segment = extract_segment(decoded_line)
                            if segment:
                                completion_buffer.write(segment)  # 收集输出
                                yield f"data: {json.dumps({'object': 'chat.completion.chunk', 'choices': [{'delta': {'content': segment}}]})}\n\n"
                    except Exception as e:
                        print(f"处理响应出错: {e}")
            
            yield "data: " + json.dumps({"object": "chat.completion.chunk", "choices": [{"delta": {}, "finish_reason": "stop"}]}) + "\n\n"
            yield "data: [DONE]\n\n"
            
            # 在流式传输完成后计算token并更新统计
            completion_tokens = num_tokens_from_string(completion_buffer.getvalue())
            update_model_stats(model, prompt_tokens, completion_tokens)
        
        return Response(generate(), mimetype="text/event-stream")
    except requests.exceptions.RequestException as e:
        error_details = str(e)
        if hasattr(e, 'response') and e.response is not None:
            if hasattr(e.response, 'text'):
                error_details += f" - Response: {e.response.text[:200]}"
        print(f"发送消息失败: {error_details}")
        return jsonify({"error": f"Failed to send message: {error_details}"}), 500


def send_message_non_stream(message, model, think=False):
    """Ne-flua traktado de mesaĝoj"""
    (session, cookies, session_token, conversation_id, model_map) = get_user_data()
    trace_id, sentry_trace = generate_trace_id()
    
    # 计算输入token
    prompt_tokens = num_tokens_from_string(message)
    
    headers = {
        "accept": "text/event-stream",
        "accept-language": "zh-CN,zh;q=0.9",
        "baggage": f"sentry-environment=production,sentry-release=975eec6685013679c139fc88db2c48e123d5c604,sentry-public_key=3476ea6df1585dd10e92cdae3a66ff49,sentry-trace_id={trace_id}",
        "content-type": "text/plain;charset=UTF-8",
        "cookie": cookies,
        "sec-ch-ua": "\"Chromium\";v=\"116\", \"Not)A;Brand\";v=\"24\", \"Google Chrome\";v=\"116\"",
        "sec-ch-ua-mobile": "?0",
        "sec-ch-ua-platform": "\"Windows\"",
        "sec-fetch-dest": "empty",
        "sec-fetch-mode": "cors",
        "sec-fetch-site": "same-origin",
        "sentry-trace": sentry_trace,
        "user-agent": random.choice(USER_AGENTS)
    }
    
    if session_token:
        headers["session-token"] = session_token
    
    payload = {
        "requestId": str(uuid.uuid4()),
        "deploymentConversationId": conversation_id,
        "message": message,
        "isDesktop": False,
        "chatConfig": {
            "timezone": "Asia/Shanghai",
            "language": "zh-CN"
        },
        "llmName": model_map[model][1],
        "externalApplicationId": model_map[model][0],
        "regenerate": True,
        "editPrompt": True
    }
    
    if think:
        payload["useThinking"] = think
    
    try:
        response = session.post(
            CHAT_URL,
            headers=headers,
            data=json.dumps(payload),
            stream=True
        )
        
        response.raise_for_status()
        buffer = io.StringIO()
        
        def extract_segment(line_data):
            try:
                data = json.loads(line_data)
                if "segment" in data:
                    if isinstance(data["segment"], str):
                        return data["segment"]
                    elif isinstance(data["segment"], dict) and "segment" in data["segment"]:
                        return data["segment"]["segment"]
                return ""
            except:
                return ""
        
        if think:
            id = ""
            think_state = 2
            think_buffer = io.StringIO()
            content_buffer = io.StringIO()
            
            for line in response.iter_lines():
                if line:
                    decoded_line = line.decode("utf-8")
                    try:
                        data = json.loads(decoded_line)
                        if data.get("type") != "text":
                            continue
                        elif think_state == 2:
                            id = data.get("messageId")
                            segment = data.get("segment", "")
                            think_buffer.write(segment)
                            think_state = 1
                        elif think_state == 1:
                            if data.get("messageId") != id:
                                segment = data.get("segment", "")
                                content_buffer.write(segment)
                            else:
                                segment = data.get("segment", "")
                                think_buffer.write(segment)
                                think_state = 0
                        else:
                            segment = data.get("segment", "")
                            content_buffer.write(segment)
                    except Exception as e:
                        print(f"处理响应出错: {e}")
            
            think_content = think_buffer.getvalue()
            response_content = content_buffer.getvalue()
            
            # 计算输出token并更新统计信息
            completion_tokens = num_tokens_from_string(think_content + response_content)
            update_model_stats(model, prompt_tokens, completion_tokens)
            
            return jsonify({
                "id": f"chatcmpl-{str(uuid.uuid4())}",
                "object": "chat.completion",
                "created": int(time.time()),
                "model": model,
                "choices": [{
                    "index": 0,
                    "message": {
                        "role": "assistant",
                        "content": f"<think>\n{think_content}\n</think>\n{response_content}"
                    },
                    "finish_reason": "stop"
                }],
                "usage": {
                    "prompt_tokens": prompt_tokens,
                    "completion_tokens": completion_tokens,
                    "total_tokens": prompt_tokens + completion_tokens
                }
            })
        else:
            for line in response.iter_lines():
                if line:
                    decoded_line = line.decode("utf-8")
                    segment = extract_segment(decoded_line)
                    if segment:
                        buffer.write(segment)
            
            response_content = buffer.getvalue()
            
            # 计算输出token并更新统计信息
            completion_tokens = num_tokens_from_string(response_content)
            update_model_stats(model, prompt_tokens, completion_tokens)
            
            return jsonify({
                "id": f"chatcmpl-{str(uuid.uuid4())}",
                "object": "chat.completion",
                "created": int(time.time()),
                "model": model,
                "choices": [{
                    "index": 0,
                    "message": {
                        "role": "assistant",
                        "content": response_content
                    },
                    "finish_reason": "stop"
                }],
                "usage": {
                    "prompt_tokens": prompt_tokens,
                    "completion_tokens": completion_tokens,
                    "total_tokens": prompt_tokens + completion_tokens
                }
            })
    except requests.exceptions.RequestException as e:
        error_details = str(e)
        if hasattr(e, 'response') and e.response is not None:
            if hasattr(e.response, 'text'):
                error_details += f" - Response: {e.response.text[:200]}"
        print(f"发送消息失败: {error_details}")
        return jsonify({"error": f"Failed to send message: {error_details}"}), 500


def format_message(messages):
    buffer = io.StringIO()
    role_map, prefix, messages = extract_role(messages)
    for message in messages:
        role = message.get("role")
        role = "\b" + role_map[role] if prefix else role_map[role]
        content = message.get("content").replace("\\n", "\n")
        pattern = re.compile(r"<\|removeRole\|>\n")
        if pattern.match(content):
            content = pattern.sub("", content)
            buffer.write(f"{content}\n")
        else:
            buffer.write(f"{role}: {content}\n\n")
    formatted_message = buffer.getvalue()
    with open("message_log.txt", "w", encoding="utf-8") as f:
        f.write(formatted_message)
    return formatted_message


def extract_role(messages):
    role_map = {"user": "Human", "assistant": "Assistant", "system": "System"}
    prefix = False
    first_message = messages[0]["content"]
    pattern = re.compile(
        r"""
        <roleInfo>\s*
        user:\s*(?P<user>[^\n]*)\s*
        assistant:\s*(?P<assistant>[^\n]*)\s*
        system:\s*(?P<system>[^\n]*)\s*
        prefix:\s*(?P<prefix>[^\n]*)\s*
        </roleInfo>\n
    """,
        re.VERBOSE,
    )
    match = pattern.search(first_message)
    if match:
        role_map = {
            "user": match.group("user"),
            "assistant": match.group("assistant"),
            "system": match.group("system"),
        }
        prefix = match.group("prefix") == "1"
        messages[0]["content"] = pattern.sub("", first_message)
        print(f"Extracted role map:")
        print(
            f"User: {role_map['user']}, Assistant: {role_map['assistant']}, System: {role_map['system']}"
        )
        print(f"Using prefix: {prefix}")
    return (role_map, prefix, messages)


@app.route("/health", methods=["GET"])
def health_check():
    global health_check_counter
    health_check_counter += 1
    return jsonify({
        "status": "healthy",
        "timestamp": datetime.now().isoformat(),
        "checks": health_check_counter
    })


def keep_alive():
    """每20分钟进行一次自我健康检查"""
    while True:
        try:
            requests.get("http://127.0.0.1:7860/health")
            time.sleep(1200)  # 20分钟
        except:
            pass  # 忽略错误,保持运行


@app.route("/", methods=["GET"])
def index():
    uptime = datetime.now() - START_TIME
    days = uptime.days
    hours, remainder = divmod(uptime.seconds, 3600)
    minutes, seconds = divmod(remainder, 60)
    
    if days > 0:
        uptime_str = f"{days}{hours}小时 {minutes}分钟"
    elif hours > 0:
        uptime_str = f"{hours}小时 {minutes}分钟"
    else:
        uptime_str = f"{minutes}分钟 {seconds}秒"

    return render_template_string(
        INDEX_HTML,
        uptime=uptime_str,
        health_checks=health_check_counter,
        user_count=USER_NUM,
        models=sorted(list(MODELS)),
        year=datetime.now().year,
        model_stats=model_usage_stats,
        total_tokens=total_tokens
    )


# 获取OpenAI的tokenizer来计算token数
def num_tokens_from_string(string, model="gpt-3.5-turbo"):
    """计算文本的token数量"""
    try:
        encoding = tiktoken.encoding_for_model(model)
        num_tokens = len(encoding.encode(string))
        return num_tokens
    except:
        # 如果tiktoken不支持模型或者出错,使用简单的估算
        return len(string) // 4  # 粗略估计每个token约4个字符

# 更新模型使用统计
def update_model_stats(model, prompt_tokens, completion_tokens):
    global model_usage_stats, total_tokens
    if model not in model_usage_stats:
        model_usage_stats[model] = {
            "count": 0,
            "prompt_tokens": 0,
            "completion_tokens": 0,
            "total_tokens": 0
        }
    
    model_usage_stats[model]["count"] += 1
    model_usage_stats[model]["prompt_tokens"] += prompt_tokens
    model_usage_stats[model]["completion_tokens"] += completion_tokens
    model_usage_stats[model]["total_tokens"] += (prompt_tokens + completion_tokens)
    
    total_tokens["prompt"] += prompt_tokens
    total_tokens["completion"] += completion_tokens
    total_tokens["total"] += (prompt_tokens + completion_tokens)


if __name__ == "__main__":
    # 启动保活线程
    threading.Thread(target=keep_alive, daemon=True).start()
    port = int(os.environ.get("PORT", 9876))
    app.run(port=port, host="0.0.0.0")