Spaces:
Runtime error
Runtime error
File size: 6,373 Bytes
2d90381 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
import streamlit as st
st.title('Numerai Example Script')
# content below from
# https://github.com/numerai/example-scripts/blob/master/example_model.py
#
import pandas as pd
from lightgbm import LGBMRegressor
import gc
import json
from pathlib import Path
from numerapi import NumerAPI
from utils import (
save_model,
load_model,
neutralize,
get_biggest_change_features,
validation_metrics,
ERA_COL,
DATA_TYPE_COL,
TARGET_COL,
EXAMPLE_PREDS_COL
)
# download all the things
napi = NumerAPI()
current_round = napi.get_current_round()
# Tournament data changes every week so we specify the round in their name. Training
# and validation data only change periodically, so no need to download them every time.
print('Downloading dataset files...')
Path("./v4").mkdir(parents=False, exist_ok=True)
napi.download_dataset("v4/train.parquet")
napi.download_dataset("v4/validation.parquet")
napi.download_dataset("v4/live.parquet", f"v4/live_{current_round}.parquet")
napi.download_dataset("v4/validation_example_preds.parquet")
napi.download_dataset("v4/features.json")
print('Reading minimal training data')
# read the feature metadata and get a feature set (or all the features)
with open("v4/features.json", "r") as f:
feature_metadata = json.load(f)
# features = list(feature_metadata["feature_stats"].keys()) # get all the features
# features = feature_metadata["feature_sets"]["small"] # get the small feature set
features = feature_metadata["feature_sets"]["medium"] # get the medium feature set
# read in just those features along with era and target columns
read_columns = features + [ERA_COL, DATA_TYPE_COL, TARGET_COL]
# note: sometimes when trying to read the downloaded data you get an error about invalid magic parquet bytes...
# if so, delete the file and rerun the napi.download_dataset to fix the corrupted file
training_data = pd.read_parquet('v4/train.parquet',
columns=read_columns)
validation_data = pd.read_parquet('v4/validation.parquet',
columns=read_columns)
live_data = pd.read_parquet(f'v4/live_{current_round}.parquet',
columns=read_columns)
# pare down the number of eras to every 4th era
# every_4th_era = training_data[ERA_COL].unique()[::4]
# training_data = training_data[training_data[ERA_COL].isin(every_4th_era)]
# getting the per era correlation of each feature vs the target
all_feature_corrs = training_data.groupby(ERA_COL).apply(
lambda era: era[features].corrwith(era[TARGET_COL])
)
# find the riskiest features by comparing their correlation vs
# the target in each half of training data; we'll use these later
riskiest_features = get_biggest_change_features(all_feature_corrs, 50)
# "garbage collection" (gc) gets rid of unused data and frees up memory
gc.collect()
model_name = f"model_target"
print(f"Checking for existing model '{model_name}'")
model = load_model(model_name)
if not model:
print(f"model not found, creating new one")
params = {"n_estimators": 2000,
"learning_rate": 0.01,
"max_depth": 5,
"num_leaves": 2 ** 5,
"colsample_bytree": 0.1}
model = LGBMRegressor(**params)
# train on all of train and save the model so we don't have to train next time
model.fit(training_data.filter(like='feature_', axis='columns'),
training_data[TARGET_COL])
print(f"saving new model: {model_name}")
save_model(model, model_name)
gc.collect()
nans_per_col = live_data[live_data["data_type"] == "live"][features].isna().sum()
# check for nans and fill nans
if nans_per_col.any():
total_rows = len(live_data[live_data["data_type"] == "live"])
print(f"Number of nans per column this week: {nans_per_col[nans_per_col > 0]}")
print(f"out of {total_rows} total rows")
print(f"filling nans with 0.5")
live_data.loc[:, features] = live_data.loc[:, features].fillna(0.5)
else:
print("No nans in the features this week!")
# double check the feature that the model expects vs what is available to prevent our
# pipeline from failing if Numerai adds more data and we don't have time to retrain!
model_expected_features = model.booster_.feature_name()
if set(model_expected_features) != set(features):
print(f"New features are available! Might want to retrain model {model_name}.")
validation_data.loc[:, f"preds_{model_name}"] = model.predict(
validation_data.loc[:, model_expected_features])
live_data.loc[:, f"preds_{model_name}"] = model.predict(
live_data.loc[:, model_expected_features])
gc.collect()
# neutralize our predictions to the riskiest features
validation_data[f"preds_{model_name}_neutral_riskiest_50"] = neutralize(
df=validation_data,
columns=[f"preds_{model_name}"],
neutralizers=riskiest_features,
proportion=1.0,
normalize=True,
era_col=ERA_COL
)
live_data[f"preds_{model_name}_neutral_riskiest_50"] = neutralize(
df=live_data,
columns=[f"preds_{model_name}"],
neutralizers=riskiest_features,
proportion=1.0,
normalize=True,
era_col=ERA_COL
)
model_to_submit = f"preds_{model_name}_neutral_riskiest_50"
# rename best model to "prediction" and rank from 0 to 1 to meet upload requirements
validation_data["prediction"] = validation_data[model_to_submit].rank(pct=True)
live_data["prediction"] = live_data[model_to_submit].rank(pct=True)
validation_data["prediction"].to_csv(f"validation_predictions_{current_round}.csv")
live_data["prediction"].to_csv(f"live_predictions_{current_round}.csv")
validation_preds = pd.read_parquet('v4/validation_example_preds.parquet')
validation_data[EXAMPLE_PREDS_COL] = validation_preds["prediction"]
# get some stats about each of our models to compare...
# fast_mode=True so that we skip some of the stats that are slower to calculate
validation_stats = validation_metrics(validation_data, [model_to_submit, f"preds_{model_name}"], example_col=EXAMPLE_PREDS_COL, fast_mode=True, target_col=TARGET_COL)
print(validation_stats[["mean", "sharpe"]].to_markdown())
print(f'''
Done! Next steps:
1. Go to numer.ai/tournament (make sure you have an account)
2. Submit validation_predictions_{current_round}.csv to the diagnostics tool
3. Submit tournament_predictions_{current_round}.csv to the "Upload Predictions" button
''') |