Spaces:
Paused
Paused
Upload 36 files
Browse files- app.py +16 -1
- diffusion_webui/__init__.py +20 -17
- diffusion_webui/diffusion_models/controlnet/__init__.py +39 -8
- diffusion_webui/diffusion_models/controlnet/controlnet_inpaint/__init__.py +21 -7
- diffusion_webui/diffusion_models/controlnet/controlnet_lineart.py +178 -0
- diffusion_webui/diffusion_models/controlnet/controlnet_lineart_anime.py +191 -0
- diffusion_webui/diffusion_models/controlnet/controlnet_mlsd.py +10 -6
- diffusion_webui/diffusion_models/controlnet/controlnet_normal.py +13 -10
- diffusion_webui/diffusion_models/controlnet/controlnet_pix2pix.py +174 -0
- diffusion_webui/diffusion_models/controlnet/controlnet_shuffle.py +176 -0
- diffusion_webui/diffusion_models/controlnet/controlnet_softedge.py +179 -0
- diffusion_webui/diffusion_models/stable_diffusion/__init__.py +9 -3
- diffusion_webui/upscaler_models/__init__.py +3 -1
- diffusion_webui/upscaler_models/codeformer_upscaler.py +1 -1
- diffusion_webui/utils/model_list.py +21 -2
app.py
CHANGED
|
@@ -12,14 +12,19 @@ from diffusion_webui import (
|
|
| 12 |
StableDiffusionControlNetInpaintPoseGenerator,
|
| 13 |
StableDiffusionControlNetInpaintScribbleGenerator,
|
| 14 |
StableDiffusionControlNetInpaintSegGenerator,
|
|
|
|
|
|
|
| 15 |
StableDiffusionControlNetMLSDGenerator,
|
|
|
|
|
|
|
| 16 |
StableDiffusionControlNetPoseGenerator,
|
| 17 |
StableDiffusionControlNetScribbleGenerator,
|
| 18 |
StableDiffusionControlNetSegGenerator,
|
|
|
|
|
|
|
| 19 |
StableDiffusionImage2ImageGenerator,
|
| 20 |
StableDiffusionInpaintGenerator,
|
| 21 |
StableDiffusionText2ImageGenerator,
|
| 22 |
-
StableDiffusionControlNetNormalGenerator,
|
| 23 |
)
|
| 24 |
|
| 25 |
|
|
@@ -51,6 +56,16 @@ def diffusion_app():
|
|
| 51 |
StableDiffusionControlNetNormalGenerator.app()
|
| 52 |
with gr.Tab("Seg"):
|
| 53 |
StableDiffusionControlNetSegGenerator.app()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
with gr.Tab("ControlNet Inpaint"):
|
| 55 |
with gr.Tab("Canny"):
|
| 56 |
StableDiffusionControlNetInpaintCannyGenerator.app()
|
|
|
|
| 12 |
StableDiffusionControlNetInpaintPoseGenerator,
|
| 13 |
StableDiffusionControlNetInpaintScribbleGenerator,
|
| 14 |
StableDiffusionControlNetInpaintSegGenerator,
|
| 15 |
+
StableDiffusionControlNetLineArtAnimeGenerator,
|
| 16 |
+
StableDiffusionControlNetLineArtGenerator,
|
| 17 |
StableDiffusionControlNetMLSDGenerator,
|
| 18 |
+
StableDiffusionControlNetNormalGenerator,
|
| 19 |
+
StableDiffusionControlNetPix2PixGenerator,
|
| 20 |
StableDiffusionControlNetPoseGenerator,
|
| 21 |
StableDiffusionControlNetScribbleGenerator,
|
| 22 |
StableDiffusionControlNetSegGenerator,
|
| 23 |
+
StableDiffusionControlNetShuffleGenerator,
|
| 24 |
+
StableDiffusionControlNetSoftEdgeGenerator,
|
| 25 |
StableDiffusionImage2ImageGenerator,
|
| 26 |
StableDiffusionInpaintGenerator,
|
| 27 |
StableDiffusionText2ImageGenerator,
|
|
|
|
| 28 |
)
|
| 29 |
|
| 30 |
|
|
|
|
| 56 |
StableDiffusionControlNetNormalGenerator.app()
|
| 57 |
with gr.Tab("Seg"):
|
| 58 |
StableDiffusionControlNetSegGenerator.app()
|
| 59 |
+
with gr.Tab("Shuffle"):
|
| 60 |
+
StableDiffusionControlNetShuffleGenerator.app()
|
| 61 |
+
with gr.Tab("Pix2Pix"):
|
| 62 |
+
StableDiffusionControlNetPix2PixGenerator.app()
|
| 63 |
+
with gr.Tab("LineArt"):
|
| 64 |
+
StableDiffusionControlNetLineArtGenerator.app()
|
| 65 |
+
with gr.Tab("LineArtAnime"):
|
| 66 |
+
StableDiffusionControlNetLineArtAnimeGenerator.app()
|
| 67 |
+
with gr.Tab("SoftEdge"):
|
| 68 |
+
StableDiffusionControlNetSoftEdgeGenerator.app()
|
| 69 |
with gr.Tab("ControlNet Inpaint"):
|
| 70 |
with gr.Tab("Canny"):
|
| 71 |
StableDiffusionControlNetInpaintCannyGenerator.app()
|
diffusion_webui/__init__.py
CHANGED
|
@@ -1,29 +1,32 @@
|
|
| 1 |
-
from diffusion_webui.diffusion_models.stable_diffusion import (
|
| 2 |
-
StableDiffusionText2ImageGenerator,
|
| 3 |
-
StableDiffusionImage2ImageGenerator,
|
| 4 |
-
StableDiffusionInpaintGenerator,
|
| 5 |
-
)
|
| 6 |
-
|
| 7 |
-
from diffusion_webui.diffusion_models.controlnet.controlnet_inpaint import (
|
| 8 |
-
StableDiffusionControlNetInpaintCannyGenerator,
|
| 9 |
-
StableDiffusionControlInpaintNetDepthGenerator,
|
| 10 |
-
StableDiffusionControlNetInpaintHedGenerator,
|
| 11 |
-
StableDiffusionControlNetInpaintMlsdGenerator,
|
| 12 |
-
StableDiffusionControlNetInpaintPoseGenerator,
|
| 13 |
-
StableDiffusionControlNetInpaintScribbleGenerator,
|
| 14 |
-
StableDiffusionControlNetInpaintSegGenerator,
|
| 15 |
-
)
|
| 16 |
-
|
| 17 |
from diffusion_webui.diffusion_models.controlnet import (
|
| 18 |
StableDiffusionControlNetCannyGenerator,
|
| 19 |
StableDiffusionControlNetDepthGenerator,
|
| 20 |
StableDiffusionControlNetHEDGenerator,
|
|
|
|
|
|
|
| 21 |
StableDiffusionControlNetMLSDGenerator,
|
| 22 |
StableDiffusionControlNetNormalGenerator,
|
|
|
|
| 23 |
StableDiffusionControlNetPoseGenerator,
|
| 24 |
StableDiffusionControlNetScribbleGenerator,
|
| 25 |
StableDiffusionControlNetSegGenerator,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
)
|
| 27 |
from diffusion_webui.upscaler_models import CodeformerUpscalerGenerator
|
| 28 |
|
| 29 |
-
__version__ = "2.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from diffusion_webui.diffusion_models.controlnet import (
|
| 2 |
StableDiffusionControlNetCannyGenerator,
|
| 3 |
StableDiffusionControlNetDepthGenerator,
|
| 4 |
StableDiffusionControlNetHEDGenerator,
|
| 5 |
+
StableDiffusionControlNetLineArtAnimeGenerator,
|
| 6 |
+
StableDiffusionControlNetLineArtGenerator,
|
| 7 |
StableDiffusionControlNetMLSDGenerator,
|
| 8 |
StableDiffusionControlNetNormalGenerator,
|
| 9 |
+
StableDiffusionControlNetPix2PixGenerator,
|
| 10 |
StableDiffusionControlNetPoseGenerator,
|
| 11 |
StableDiffusionControlNetScribbleGenerator,
|
| 12 |
StableDiffusionControlNetSegGenerator,
|
| 13 |
+
StableDiffusionControlNetShuffleGenerator,
|
| 14 |
+
StableDiffusionControlNetSoftEdgeGenerator,
|
| 15 |
+
)
|
| 16 |
+
from diffusion_webui.diffusion_models.controlnet.controlnet_inpaint import (
|
| 17 |
+
StableDiffusionControlInpaintNetDepthGenerator,
|
| 18 |
+
StableDiffusionControlNetInpaintCannyGenerator,
|
| 19 |
+
StableDiffusionControlNetInpaintHedGenerator,
|
| 20 |
+
StableDiffusionControlNetInpaintMlsdGenerator,
|
| 21 |
+
StableDiffusionControlNetInpaintPoseGenerator,
|
| 22 |
+
StableDiffusionControlNetInpaintScribbleGenerator,
|
| 23 |
+
StableDiffusionControlNetInpaintSegGenerator,
|
| 24 |
+
)
|
| 25 |
+
from diffusion_webui.diffusion_models.stable_diffusion import (
|
| 26 |
+
StableDiffusionImage2ImageGenerator,
|
| 27 |
+
StableDiffusionInpaintGenerator,
|
| 28 |
+
StableDiffusionText2ImageGenerator,
|
| 29 |
)
|
| 30 |
from diffusion_webui.upscaler_models import CodeformerUpscalerGenerator
|
| 31 |
|
| 32 |
+
__version__ = "2.4.0"
|
diffusion_webui/diffusion_models/controlnet/__init__.py
CHANGED
|
@@ -1,8 +1,39 @@
|
|
| 1 |
-
from diffusion_webui.diffusion_models.controlnet.controlnet_canny import
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
from diffusion_webui.diffusion_models.controlnet.
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
from diffusion_webui.diffusion_models.controlnet.
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from diffusion_webui.diffusion_models.controlnet.controlnet_canny import (
|
| 2 |
+
StableDiffusionControlNetCannyGenerator,
|
| 3 |
+
)
|
| 4 |
+
from diffusion_webui.diffusion_models.controlnet.controlnet_depth import (
|
| 5 |
+
StableDiffusionControlNetDepthGenerator,
|
| 6 |
+
)
|
| 7 |
+
from diffusion_webui.diffusion_models.controlnet.controlnet_hed import (
|
| 8 |
+
StableDiffusionControlNetHEDGenerator,
|
| 9 |
+
)
|
| 10 |
+
from diffusion_webui.diffusion_models.controlnet.controlnet_lineart import (
|
| 11 |
+
StableDiffusionControlNetLineArtGenerator,
|
| 12 |
+
)
|
| 13 |
+
from diffusion_webui.diffusion_models.controlnet.controlnet_lineart_anime import (
|
| 14 |
+
StableDiffusionControlNetLineArtAnimeGenerator,
|
| 15 |
+
)
|
| 16 |
+
from diffusion_webui.diffusion_models.controlnet.controlnet_mlsd import (
|
| 17 |
+
StableDiffusionControlNetMLSDGenerator,
|
| 18 |
+
)
|
| 19 |
+
from diffusion_webui.diffusion_models.controlnet.controlnet_normal import (
|
| 20 |
+
StableDiffusionControlNetNormalGenerator,
|
| 21 |
+
)
|
| 22 |
+
from diffusion_webui.diffusion_models.controlnet.controlnet_pix2pix import (
|
| 23 |
+
StableDiffusionControlNetPix2PixGenerator,
|
| 24 |
+
)
|
| 25 |
+
from diffusion_webui.diffusion_models.controlnet.controlnet_pose import (
|
| 26 |
+
StableDiffusionControlNetPoseGenerator,
|
| 27 |
+
)
|
| 28 |
+
from diffusion_webui.diffusion_models.controlnet.controlnet_scribble import (
|
| 29 |
+
StableDiffusionControlNetScribbleGenerator,
|
| 30 |
+
)
|
| 31 |
+
from diffusion_webui.diffusion_models.controlnet.controlnet_seg import (
|
| 32 |
+
StableDiffusionControlNetSegGenerator,
|
| 33 |
+
)
|
| 34 |
+
from diffusion_webui.diffusion_models.controlnet.controlnet_shuffle import (
|
| 35 |
+
StableDiffusionControlNetShuffleGenerator,
|
| 36 |
+
)
|
| 37 |
+
from diffusion_webui.diffusion_models.controlnet.controlnet_softedge import (
|
| 38 |
+
StableDiffusionControlNetSoftEdgeGenerator,
|
| 39 |
+
)
|
diffusion_webui/diffusion_models/controlnet/controlnet_inpaint/__init__.py
CHANGED
|
@@ -1,7 +1,21 @@
|
|
| 1 |
-
from diffusion_webui.diffusion_models.controlnet.controlnet_inpaint.controlnet_inpaint_canny import
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
from diffusion_webui.diffusion_models.controlnet.controlnet_inpaint.
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
from diffusion_webui.diffusion_models.controlnet.controlnet_inpaint.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from diffusion_webui.diffusion_models.controlnet.controlnet_inpaint.controlnet_inpaint_canny import (
|
| 2 |
+
StableDiffusionControlNetInpaintCannyGenerator,
|
| 3 |
+
)
|
| 4 |
+
from diffusion_webui.diffusion_models.controlnet.controlnet_inpaint.controlnet_inpaint_depth import (
|
| 5 |
+
StableDiffusionControlInpaintNetDepthGenerator,
|
| 6 |
+
)
|
| 7 |
+
from diffusion_webui.diffusion_models.controlnet.controlnet_inpaint.controlnet_inpaint_hed import (
|
| 8 |
+
StableDiffusionControlNetInpaintHedGenerator,
|
| 9 |
+
)
|
| 10 |
+
from diffusion_webui.diffusion_models.controlnet.controlnet_inpaint.controlnet_inpaint_mlsd import (
|
| 11 |
+
StableDiffusionControlNetInpaintMlsdGenerator,
|
| 12 |
+
)
|
| 13 |
+
from diffusion_webui.diffusion_models.controlnet.controlnet_inpaint.controlnet_inpaint_pose import (
|
| 14 |
+
StableDiffusionControlNetInpaintPoseGenerator,
|
| 15 |
+
)
|
| 16 |
+
from diffusion_webui.diffusion_models.controlnet.controlnet_inpaint.controlnet_inpaint_scribble import (
|
| 17 |
+
StableDiffusionControlNetInpaintScribbleGenerator,
|
| 18 |
+
)
|
| 19 |
+
from diffusion_webui.diffusion_models.controlnet.controlnet_inpaint.controlnet_inpaint_seg import (
|
| 20 |
+
StableDiffusionControlNetInpaintSegGenerator,
|
| 21 |
+
)
|
diffusion_webui/diffusion_models/controlnet/controlnet_lineart.py
ADDED
|
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from controlnet_aux import LineartDetector
|
| 4 |
+
from diffusers import ControlNetModel, StableDiffusionControlNetPipeline
|
| 5 |
+
from diffusers.utils import load_image
|
| 6 |
+
|
| 7 |
+
from diffusion_webui.utils.model_list import (
|
| 8 |
+
controlnet_lineart_model_list,
|
| 9 |
+
stable_model_list,
|
| 10 |
+
)
|
| 11 |
+
from diffusion_webui.utils.scheduler_list import (
|
| 12 |
+
SCHEDULER_LIST,
|
| 13 |
+
get_scheduler_list,
|
| 14 |
+
)
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class StableDiffusionControlNetLineArtGenerator:
|
| 18 |
+
def __init__(self):
|
| 19 |
+
self.pipe = None
|
| 20 |
+
|
| 21 |
+
def load_model(self, stable_model_path, controlnet_model_path, scheduler):
|
| 22 |
+
if self.pipe is None:
|
| 23 |
+
controlnet = ControlNetModel.from_pretrained(
|
| 24 |
+
controlnet_model_path, torch_dtype=torch.float16
|
| 25 |
+
)
|
| 26 |
+
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 27 |
+
pretrained_model_name_or_path=stable_model_path,
|
| 28 |
+
controlnet=controlnet,
|
| 29 |
+
safety_checker=None,
|
| 30 |
+
torch_dtype=torch.float16,
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
self.pipe = get_scheduler_list(pipe=self.pipe, scheduler=scheduler)
|
| 34 |
+
self.pipe.to("cuda")
|
| 35 |
+
self.pipe.enable_xformers_memory_efficient_attention()
|
| 36 |
+
|
| 37 |
+
return self.pipe
|
| 38 |
+
|
| 39 |
+
def controlnet_lineart(
|
| 40 |
+
self,
|
| 41 |
+
image_path: str,
|
| 42 |
+
):
|
| 43 |
+
image = load_image(image_path)
|
| 44 |
+
image = image.resize((512, 512))
|
| 45 |
+
processor = LineartDetector.from_pretrained("lllyasviel/Annotators")
|
| 46 |
+
control_image = processor(image)
|
| 47 |
+
return control_image
|
| 48 |
+
|
| 49 |
+
def generate_image(
|
| 50 |
+
self,
|
| 51 |
+
image_path: str,
|
| 52 |
+
stable_model_path: str,
|
| 53 |
+
controlnet_model_path: str,
|
| 54 |
+
prompt: str,
|
| 55 |
+
negative_prompt: str,
|
| 56 |
+
num_images_per_prompt: int,
|
| 57 |
+
guidance_scale: int,
|
| 58 |
+
num_inference_step: int,
|
| 59 |
+
scheduler: str,
|
| 60 |
+
seed_generator: int,
|
| 61 |
+
):
|
| 62 |
+
pipe = self.load_model(
|
| 63 |
+
stable_model_path=stable_model_path,
|
| 64 |
+
controlnet_model_path=controlnet_model_path,
|
| 65 |
+
scheduler=scheduler,
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
image = self.controlnet_lineart(image_path)
|
| 69 |
+
|
| 70 |
+
if seed_generator == 0:
|
| 71 |
+
random_seed = torch.randint(0, 1000000, (1,))
|
| 72 |
+
generator = torch.manual_seed(random_seed)
|
| 73 |
+
else:
|
| 74 |
+
generator = torch.manual_seed(seed_generator)
|
| 75 |
+
|
| 76 |
+
output = pipe(
|
| 77 |
+
prompt=prompt,
|
| 78 |
+
image=image,
|
| 79 |
+
negative_prompt=negative_prompt,
|
| 80 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 81 |
+
num_inference_steps=num_inference_step,
|
| 82 |
+
guidance_scale=guidance_scale,
|
| 83 |
+
generator=generator,
|
| 84 |
+
).images
|
| 85 |
+
|
| 86 |
+
return output
|
| 87 |
+
|
| 88 |
+
def app():
|
| 89 |
+
with gr.Blocks():
|
| 90 |
+
with gr.Row():
|
| 91 |
+
with gr.Column():
|
| 92 |
+
controlnet_canny_image_file = gr.Image(
|
| 93 |
+
type="filepath", label="Image"
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
controlnet_canny_prompt = gr.Textbox(
|
| 97 |
+
lines=1,
|
| 98 |
+
placeholder="Prompt",
|
| 99 |
+
show_label=False,
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
controlnet_canny_negative_prompt = gr.Textbox(
|
| 103 |
+
lines=1,
|
| 104 |
+
placeholder="Negative Prompt",
|
| 105 |
+
show_label=False,
|
| 106 |
+
)
|
| 107 |
+
with gr.Row():
|
| 108 |
+
with gr.Column():
|
| 109 |
+
controlnet_canny_stable_model_id = gr.Dropdown(
|
| 110 |
+
choices=stable_model_list,
|
| 111 |
+
value=stable_model_list[0],
|
| 112 |
+
label="Stable Model Id",
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
controlnet_canny_guidance_scale = gr.Slider(
|
| 116 |
+
minimum=0.1,
|
| 117 |
+
maximum=15,
|
| 118 |
+
step=0.1,
|
| 119 |
+
value=7.5,
|
| 120 |
+
label="Guidance Scale",
|
| 121 |
+
)
|
| 122 |
+
controlnet_canny_num_inference_step = gr.Slider(
|
| 123 |
+
minimum=1,
|
| 124 |
+
maximum=100,
|
| 125 |
+
step=1,
|
| 126 |
+
value=50,
|
| 127 |
+
label="Num Inference Step",
|
| 128 |
+
)
|
| 129 |
+
controlnet_canny_num_images_per_prompt = gr.Slider(
|
| 130 |
+
minimum=1,
|
| 131 |
+
maximum=10,
|
| 132 |
+
step=1,
|
| 133 |
+
value=1,
|
| 134 |
+
label="Number Of Images",
|
| 135 |
+
)
|
| 136 |
+
with gr.Row():
|
| 137 |
+
with gr.Column():
|
| 138 |
+
controlnet_canny_model_id = gr.Dropdown(
|
| 139 |
+
choices=controlnet_lineart_model_list,
|
| 140 |
+
value=controlnet_lineart_model_list[0],
|
| 141 |
+
label="ControlNet Model Id",
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
controlnet_canny_scheduler = gr.Dropdown(
|
| 145 |
+
choices=SCHEDULER_LIST,
|
| 146 |
+
value=SCHEDULER_LIST[0],
|
| 147 |
+
label="Scheduler",
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
controlnet_canny_seed_generator = gr.Number(
|
| 151 |
+
value=0,
|
| 152 |
+
label="Seed Generator",
|
| 153 |
+
)
|
| 154 |
+
controlnet_canny_predict = gr.Button(value="Generator")
|
| 155 |
+
|
| 156 |
+
with gr.Column():
|
| 157 |
+
output_image = gr.Gallery(
|
| 158 |
+
label="Generated images",
|
| 159 |
+
show_label=False,
|
| 160 |
+
elem_id="gallery",
|
| 161 |
+
).style(grid=(1, 2))
|
| 162 |
+
|
| 163 |
+
controlnet_canny_predict.click(
|
| 164 |
+
fn=StableDiffusionControlNetLineArtGenerator().generate_image,
|
| 165 |
+
inputs=[
|
| 166 |
+
controlnet_canny_image_file,
|
| 167 |
+
controlnet_canny_stable_model_id,
|
| 168 |
+
controlnet_canny_model_id,
|
| 169 |
+
controlnet_canny_prompt,
|
| 170 |
+
controlnet_canny_negative_prompt,
|
| 171 |
+
controlnet_canny_num_images_per_prompt,
|
| 172 |
+
controlnet_canny_guidance_scale,
|
| 173 |
+
controlnet_canny_num_inference_step,
|
| 174 |
+
controlnet_canny_scheduler,
|
| 175 |
+
controlnet_canny_seed_generator,
|
| 176 |
+
],
|
| 177 |
+
outputs=[output_image],
|
| 178 |
+
)
|
diffusion_webui/diffusion_models/controlnet/controlnet_lineart_anime.py
ADDED
|
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from controlnet_aux import LineartAnimeDetector
|
| 4 |
+
from diffusers import ControlNetModel, StableDiffusionControlNetPipeline
|
| 5 |
+
from diffusers.utils import load_image
|
| 6 |
+
from transformers import CLIPTextModel
|
| 7 |
+
|
| 8 |
+
from diffusion_webui.utils.model_list import (
|
| 9 |
+
controlnet_lineart_anime_model_list,
|
| 10 |
+
stable_model_list,
|
| 11 |
+
)
|
| 12 |
+
from diffusion_webui.utils.scheduler_list import (
|
| 13 |
+
SCHEDULER_LIST,
|
| 14 |
+
get_scheduler_list,
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
class StableDiffusionControlNetLineArtAnimeGenerator:
|
| 19 |
+
def __init__(self):
|
| 20 |
+
self.pipe = None
|
| 21 |
+
|
| 22 |
+
def load_model(self, stable_model_path, controlnet_model_path, scheduler):
|
| 23 |
+
if self.pipe is None:
|
| 24 |
+
text_encoder = CLIPTextModel.from_pretrained(
|
| 25 |
+
stable_model_path,
|
| 26 |
+
subfolder="text_encoder",
|
| 27 |
+
num_hidden_layers=11,
|
| 28 |
+
torch_dtype=torch.float16,
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
controlnet = ControlNetModel.from_pretrained(
|
| 32 |
+
controlnet_model_path, torch_dtype=torch.float16
|
| 33 |
+
)
|
| 34 |
+
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 35 |
+
pretrained_model_name_or_path=stable_model_path,
|
| 36 |
+
text_encoder=text_encoder,
|
| 37 |
+
controlnet=controlnet,
|
| 38 |
+
safety_checker=None,
|
| 39 |
+
torch_dtype=torch.float16,
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
self.pipe = get_scheduler_list(pipe=self.pipe, scheduler=scheduler)
|
| 43 |
+
self.pipe.to("cuda")
|
| 44 |
+
self.pipe.enable_xformers_memory_efficient_attention()
|
| 45 |
+
|
| 46 |
+
return self.pipe
|
| 47 |
+
|
| 48 |
+
def controlnet_lineart_anime(
|
| 49 |
+
self,
|
| 50 |
+
image_path: str,
|
| 51 |
+
):
|
| 52 |
+
image = load_image(image_path)
|
| 53 |
+
image = image.resize((512, 512))
|
| 54 |
+
processor = LineartAnimeDetector.from_pretrained(
|
| 55 |
+
"lllyasviel/Annotators"
|
| 56 |
+
)
|
| 57 |
+
control_image = processor(image)
|
| 58 |
+
return control_image
|
| 59 |
+
|
| 60 |
+
def generate_image(
|
| 61 |
+
self,
|
| 62 |
+
image_path: str,
|
| 63 |
+
stable_model_path: str,
|
| 64 |
+
controlnet_model_path: str,
|
| 65 |
+
prompt: str,
|
| 66 |
+
negative_prompt: str,
|
| 67 |
+
num_images_per_prompt: int,
|
| 68 |
+
guidance_scale: int,
|
| 69 |
+
num_inference_step: int,
|
| 70 |
+
scheduler: str,
|
| 71 |
+
seed_generator: int,
|
| 72 |
+
):
|
| 73 |
+
pipe = self.load_model(
|
| 74 |
+
stable_model_path=stable_model_path,
|
| 75 |
+
controlnet_model_path=controlnet_model_path,
|
| 76 |
+
scheduler=scheduler,
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
image = self.controlnet_lineart_anime(image_path)
|
| 80 |
+
|
| 81 |
+
if seed_generator == 0:
|
| 82 |
+
random_seed = torch.randint(0, 1000000, (1,))
|
| 83 |
+
generator = torch.manual_seed(random_seed)
|
| 84 |
+
else:
|
| 85 |
+
generator = torch.manual_seed(seed_generator)
|
| 86 |
+
|
| 87 |
+
output = pipe(
|
| 88 |
+
prompt=prompt,
|
| 89 |
+
image=image,
|
| 90 |
+
negative_prompt=negative_prompt,
|
| 91 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 92 |
+
num_inference_steps=num_inference_step,
|
| 93 |
+
guidance_scale=guidance_scale,
|
| 94 |
+
generator=generator,
|
| 95 |
+
).images
|
| 96 |
+
|
| 97 |
+
return output
|
| 98 |
+
|
| 99 |
+
def app():
|
| 100 |
+
with gr.Blocks():
|
| 101 |
+
with gr.Row():
|
| 102 |
+
with gr.Column():
|
| 103 |
+
controlnet_canny_image_file = gr.Image(
|
| 104 |
+
type="filepath", label="Image"
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
controlnet_canny_prompt = gr.Textbox(
|
| 108 |
+
lines=1,
|
| 109 |
+
placeholder="Prompt",
|
| 110 |
+
show_label=False,
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
controlnet_canny_negative_prompt = gr.Textbox(
|
| 114 |
+
lines=1,
|
| 115 |
+
placeholder="Negative Prompt",
|
| 116 |
+
show_label=False,
|
| 117 |
+
)
|
| 118 |
+
with gr.Row():
|
| 119 |
+
with gr.Column():
|
| 120 |
+
controlnet_canny_stable_model_id = gr.Dropdown(
|
| 121 |
+
choices=stable_model_list,
|
| 122 |
+
value=stable_model_list[0],
|
| 123 |
+
label="Stable Model Id",
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
controlnet_canny_guidance_scale = gr.Slider(
|
| 127 |
+
minimum=0.1,
|
| 128 |
+
maximum=15,
|
| 129 |
+
step=0.1,
|
| 130 |
+
value=7.5,
|
| 131 |
+
label="Guidance Scale",
|
| 132 |
+
)
|
| 133 |
+
controlnet_canny_num_inference_step = gr.Slider(
|
| 134 |
+
minimum=1,
|
| 135 |
+
maximum=100,
|
| 136 |
+
step=1,
|
| 137 |
+
value=50,
|
| 138 |
+
label="Num Inference Step",
|
| 139 |
+
)
|
| 140 |
+
controlnet_canny_num_images_per_prompt = gr.Slider(
|
| 141 |
+
minimum=1,
|
| 142 |
+
maximum=10,
|
| 143 |
+
step=1,
|
| 144 |
+
value=1,
|
| 145 |
+
label="Number Of Images",
|
| 146 |
+
)
|
| 147 |
+
with gr.Row():
|
| 148 |
+
with gr.Column():
|
| 149 |
+
controlnet_canny_model_id = gr.Dropdown(
|
| 150 |
+
choices=controlnet_lineart_anime_model_list,
|
| 151 |
+
value=controlnet_lineart_anime_model_list[
|
| 152 |
+
0
|
| 153 |
+
],
|
| 154 |
+
label="ControlNet Model Id",
|
| 155 |
+
)
|
| 156 |
+
|
| 157 |
+
controlnet_canny_scheduler = gr.Dropdown(
|
| 158 |
+
choices=SCHEDULER_LIST,
|
| 159 |
+
value=SCHEDULER_LIST[0],
|
| 160 |
+
label="Scheduler",
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
controlnet_canny_seed_generator = gr.Number(
|
| 164 |
+
value=0,
|
| 165 |
+
label="Seed Generator",
|
| 166 |
+
)
|
| 167 |
+
controlnet_canny_predict = gr.Button(value="Generator")
|
| 168 |
+
|
| 169 |
+
with gr.Column():
|
| 170 |
+
output_image = gr.Gallery(
|
| 171 |
+
label="Generated images",
|
| 172 |
+
show_label=False,
|
| 173 |
+
elem_id="gallery",
|
| 174 |
+
).style(grid=(1, 2))
|
| 175 |
+
|
| 176 |
+
controlnet_canny_predict.click(
|
| 177 |
+
fn=StableDiffusionControlNetLineArtAnimeGenerator().generate_image,
|
| 178 |
+
inputs=[
|
| 179 |
+
controlnet_canny_image_file,
|
| 180 |
+
controlnet_canny_stable_model_id,
|
| 181 |
+
controlnet_canny_model_id,
|
| 182 |
+
controlnet_canny_prompt,
|
| 183 |
+
controlnet_canny_negative_prompt,
|
| 184 |
+
controlnet_canny_num_images_per_prompt,
|
| 185 |
+
controlnet_canny_guidance_scale,
|
| 186 |
+
controlnet_canny_num_inference_step,
|
| 187 |
+
controlnet_canny_scheduler,
|
| 188 |
+
controlnet_canny_seed_generator,
|
| 189 |
+
],
|
| 190 |
+
outputs=[output_image],
|
| 191 |
+
)
|
diffusion_webui/diffusion_models/controlnet/controlnet_mlsd.py
CHANGED
|
@@ -4,7 +4,10 @@ from controlnet_aux import MLSDdetector
|
|
| 4 |
from diffusers import ControlNetModel, StableDiffusionControlNetPipeline
|
| 5 |
from PIL import Image
|
| 6 |
|
| 7 |
-
from diffusion_webui.utils.model_list import
|
|
|
|
|
|
|
|
|
|
| 8 |
from diffusion_webui.utils.scheduler_list import (
|
| 9 |
SCHEDULER_LIST,
|
| 10 |
get_scheduler_list,
|
|
@@ -125,11 +128,12 @@ class StableDiffusionControlNetMLSDGenerator:
|
|
| 125 |
|
| 126 |
with gr.Row():
|
| 127 |
with gr.Column():
|
| 128 |
-
controlnet_mlsd_controlnet_model_id =
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
|
|
|
| 133 |
)
|
| 134 |
controlnet_mlsd_scheduler = gr.Dropdown(
|
| 135 |
choices=SCHEDULER_LIST,
|
|
|
|
| 4 |
from diffusers import ControlNetModel, StableDiffusionControlNetPipeline
|
| 5 |
from PIL import Image
|
| 6 |
|
| 7 |
+
from diffusion_webui.utils.model_list import (
|
| 8 |
+
controlnet_mlsd_model_list,
|
| 9 |
+
stable_model_list,
|
| 10 |
+
)
|
| 11 |
from diffusion_webui.utils.scheduler_list import (
|
| 12 |
SCHEDULER_LIST,
|
| 13 |
get_scheduler_list,
|
|
|
|
| 128 |
|
| 129 |
with gr.Row():
|
| 130 |
with gr.Column():
|
| 131 |
+
controlnet_mlsd_controlnet_model_id = (
|
| 132 |
+
gr.Dropdown(
|
| 133 |
+
choices=controlnet_mlsd_model_list,
|
| 134 |
+
value=controlnet_mlsd_model_list[0],
|
| 135 |
+
label="ControlNet Model Id",
|
| 136 |
+
)
|
| 137 |
)
|
| 138 |
controlnet_mlsd_scheduler = gr.Dropdown(
|
| 139 |
choices=SCHEDULER_LIST,
|
diffusion_webui/diffusion_models/controlnet/controlnet_normal.py
CHANGED
|
@@ -1,12 +1,11 @@
|
|
| 1 |
-
|
| 2 |
-
from diffusers.utils import load_image
|
| 3 |
-
from transformers import pipeline
|
| 4 |
-
from PIL import Image
|
| 5 |
import gradio as gr
|
| 6 |
import numpy as np
|
| 7 |
import torch
|
| 8 |
-
import
|
| 9 |
-
|
|
|
|
|
|
|
| 10 |
|
| 11 |
from diffusion_webui.utils.model_list import (
|
| 12 |
controlnet_normal_model_list,
|
|
@@ -45,8 +44,10 @@ class StableDiffusionControlNetNormalGenerator:
|
|
| 45 |
image_path: str,
|
| 46 |
):
|
| 47 |
image = load_image(image_path).convert("RGB")
|
| 48 |
-
depth_estimator = pipeline(
|
| 49 |
-
|
|
|
|
|
|
|
| 50 |
image = image.numpy()
|
| 51 |
image_depth = image.copy()
|
| 52 |
image_depth -= np.min(image_depth)
|
|
@@ -76,7 +77,9 @@ class StableDiffusionControlNetNormalGenerator:
|
|
| 76 |
scheduler: str,
|
| 77 |
seed_generator: int,
|
| 78 |
):
|
| 79 |
-
pipe = self.load_model(
|
|
|
|
|
|
|
| 80 |
image = self.controlnet_normal(image_path)
|
| 81 |
|
| 82 |
if seed_generator == 0:
|
|
@@ -84,7 +87,7 @@ class StableDiffusionControlNetNormalGenerator:
|
|
| 84 |
generator = torch.manual_seed(random_seed)
|
| 85 |
else:
|
| 86 |
generator = torch.manual_seed(seed_generator)
|
| 87 |
-
|
| 88 |
output = pipe(
|
| 89 |
prompt=prompt,
|
| 90 |
image=image,
|
|
|
|
| 1 |
+
import cv2
|
|
|
|
|
|
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
import numpy as np
|
| 4 |
import torch
|
| 5 |
+
from diffusers import ControlNetModel, StableDiffusionControlNetPipeline
|
| 6 |
+
from diffusers.utils import load_image
|
| 7 |
+
from PIL import Image
|
| 8 |
+
from transformers import pipeline
|
| 9 |
|
| 10 |
from diffusion_webui.utils.model_list import (
|
| 11 |
controlnet_normal_model_list,
|
|
|
|
| 44 |
image_path: str,
|
| 45 |
):
|
| 46 |
image = load_image(image_path).convert("RGB")
|
| 47 |
+
depth_estimator = pipeline(
|
| 48 |
+
"depth-estimation", model="Intel/dpt-hybrid-midas"
|
| 49 |
+
)
|
| 50 |
+
image = depth_estimator(image)["predicted_depth"][0]
|
| 51 |
image = image.numpy()
|
| 52 |
image_depth = image.copy()
|
| 53 |
image_depth -= np.min(image_depth)
|
|
|
|
| 77 |
scheduler: str,
|
| 78 |
seed_generator: int,
|
| 79 |
):
|
| 80 |
+
pipe = self.load_model(
|
| 81 |
+
stable_model_path, controlnet_model_path, scheduler
|
| 82 |
+
)
|
| 83 |
image = self.controlnet_normal(image_path)
|
| 84 |
|
| 85 |
if seed_generator == 0:
|
|
|
|
| 87 |
generator = torch.manual_seed(random_seed)
|
| 88 |
else:
|
| 89 |
generator = torch.manual_seed(seed_generator)
|
| 90 |
+
|
| 91 |
output = pipe(
|
| 92 |
prompt=prompt,
|
| 93 |
image=image,
|
diffusion_webui/diffusion_models/controlnet/controlnet_pix2pix.py
ADDED
|
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from diffusers import ControlNetModel, StableDiffusionControlNetPipeline
|
| 4 |
+
from diffusers.utils import load_image
|
| 5 |
+
|
| 6 |
+
from diffusion_webui.utils.model_list import (
|
| 7 |
+
controlnet_lineart_model_list,
|
| 8 |
+
stable_model_list,
|
| 9 |
+
)
|
| 10 |
+
from diffusion_webui.utils.scheduler_list import (
|
| 11 |
+
SCHEDULER_LIST,
|
| 12 |
+
get_scheduler_list,
|
| 13 |
+
)
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class StableDiffusionControlNetPix2PixGenerator:
|
| 17 |
+
def __init__(self):
|
| 18 |
+
self.pipe = None
|
| 19 |
+
|
| 20 |
+
def load_model(self, stable_model_path, controlnet_model_path, scheduler):
|
| 21 |
+
if self.pipe is None:
|
| 22 |
+
controlnet = ControlNetModel.from_pretrained(
|
| 23 |
+
controlnet_model_path, torch_dtype=torch.float16
|
| 24 |
+
)
|
| 25 |
+
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 26 |
+
pretrained_model_name_or_path=stable_model_path,
|
| 27 |
+
controlnet=controlnet,
|
| 28 |
+
safety_checker=None,
|
| 29 |
+
torch_dtype=torch.float16,
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
self.pipe = get_scheduler_list(pipe=self.pipe, scheduler=scheduler)
|
| 33 |
+
self.pipe.to("cuda")
|
| 34 |
+
self.pipe.enable_xformers_memory_efficient_attention()
|
| 35 |
+
|
| 36 |
+
return self.pipe
|
| 37 |
+
|
| 38 |
+
def controlnet_pix2pix(
|
| 39 |
+
self,
|
| 40 |
+
image_path: str,
|
| 41 |
+
):
|
| 42 |
+
control_image = load_image(image_path).convert("RGB")
|
| 43 |
+
return control_image
|
| 44 |
+
|
| 45 |
+
def generate_image(
|
| 46 |
+
self,
|
| 47 |
+
image_path: str,
|
| 48 |
+
stable_model_path: str,
|
| 49 |
+
controlnet_model_path: str,
|
| 50 |
+
prompt: str,
|
| 51 |
+
negative_prompt: str,
|
| 52 |
+
num_images_per_prompt: int,
|
| 53 |
+
guidance_scale: int,
|
| 54 |
+
num_inference_step: int,
|
| 55 |
+
scheduler: str,
|
| 56 |
+
seed_generator: int,
|
| 57 |
+
):
|
| 58 |
+
pipe = self.load_model(
|
| 59 |
+
stable_model_path=stable_model_path,
|
| 60 |
+
controlnet_model_path=controlnet_model_path,
|
| 61 |
+
scheduler=scheduler,
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
image = self.controlnet_pix2pix(image_path)
|
| 65 |
+
|
| 66 |
+
if seed_generator == 0:
|
| 67 |
+
random_seed = torch.randint(0, 1000000, (1,))
|
| 68 |
+
generator = torch.manual_seed(random_seed)
|
| 69 |
+
else:
|
| 70 |
+
generator = torch.manual_seed(seed_generator)
|
| 71 |
+
|
| 72 |
+
output = pipe(
|
| 73 |
+
prompt=prompt,
|
| 74 |
+
image=image,
|
| 75 |
+
negative_prompt=negative_prompt,
|
| 76 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 77 |
+
num_inference_steps=num_inference_step,
|
| 78 |
+
guidance_scale=guidance_scale,
|
| 79 |
+
generator=generator,
|
| 80 |
+
).images
|
| 81 |
+
|
| 82 |
+
return output
|
| 83 |
+
|
| 84 |
+
def app():
|
| 85 |
+
with gr.Blocks():
|
| 86 |
+
with gr.Row():
|
| 87 |
+
with gr.Column():
|
| 88 |
+
controlnet_canny_image_file = gr.Image(
|
| 89 |
+
type="filepath", label="Image"
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
controlnet_canny_prompt = gr.Textbox(
|
| 93 |
+
lines=1,
|
| 94 |
+
placeholder="Prompt",
|
| 95 |
+
show_label=False,
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
controlnet_canny_negative_prompt = gr.Textbox(
|
| 99 |
+
lines=1,
|
| 100 |
+
placeholder="Negative Prompt",
|
| 101 |
+
show_label=False,
|
| 102 |
+
)
|
| 103 |
+
with gr.Row():
|
| 104 |
+
with gr.Column():
|
| 105 |
+
controlnet_canny_stable_model_id = gr.Dropdown(
|
| 106 |
+
choices=stable_model_list,
|
| 107 |
+
value=stable_model_list[0],
|
| 108 |
+
label="Stable Model Id",
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
controlnet_canny_guidance_scale = gr.Slider(
|
| 112 |
+
minimum=0.1,
|
| 113 |
+
maximum=15,
|
| 114 |
+
step=0.1,
|
| 115 |
+
value=7.5,
|
| 116 |
+
label="Guidance Scale",
|
| 117 |
+
)
|
| 118 |
+
controlnet_canny_num_inference_step = gr.Slider(
|
| 119 |
+
minimum=1,
|
| 120 |
+
maximum=100,
|
| 121 |
+
step=1,
|
| 122 |
+
value=50,
|
| 123 |
+
label="Num Inference Step",
|
| 124 |
+
)
|
| 125 |
+
controlnet_canny_num_images_per_prompt = gr.Slider(
|
| 126 |
+
minimum=1,
|
| 127 |
+
maximum=10,
|
| 128 |
+
step=1,
|
| 129 |
+
value=1,
|
| 130 |
+
label="Number Of Images",
|
| 131 |
+
)
|
| 132 |
+
with gr.Row():
|
| 133 |
+
with gr.Column():
|
| 134 |
+
controlnet_canny_model_id = gr.Dropdown(
|
| 135 |
+
choices=controlnet_lineart_model_list,
|
| 136 |
+
value=controlnet_lineart_model_list[0],
|
| 137 |
+
label="ControlNet Model Id",
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
controlnet_canny_scheduler = gr.Dropdown(
|
| 141 |
+
choices=SCHEDULER_LIST,
|
| 142 |
+
value=SCHEDULER_LIST[0],
|
| 143 |
+
label="Scheduler",
|
| 144 |
+
)
|
| 145 |
+
|
| 146 |
+
controlnet_canny_seed_generator = gr.Number(
|
| 147 |
+
value=0,
|
| 148 |
+
label="Seed Generator",
|
| 149 |
+
)
|
| 150 |
+
controlnet_canny_predict = gr.Button(value="Generator")
|
| 151 |
+
|
| 152 |
+
with gr.Column():
|
| 153 |
+
output_image = gr.Gallery(
|
| 154 |
+
label="Generated images",
|
| 155 |
+
show_label=False,
|
| 156 |
+
elem_id="gallery",
|
| 157 |
+
).style(grid=(1, 2))
|
| 158 |
+
|
| 159 |
+
controlnet_canny_predict.click(
|
| 160 |
+
fn=StableDiffusionControlNetPix2PixGenerator().generate_image,
|
| 161 |
+
inputs=[
|
| 162 |
+
controlnet_canny_image_file,
|
| 163 |
+
controlnet_canny_stable_model_id,
|
| 164 |
+
controlnet_canny_model_id,
|
| 165 |
+
controlnet_canny_prompt,
|
| 166 |
+
controlnet_canny_negative_prompt,
|
| 167 |
+
controlnet_canny_num_images_per_prompt,
|
| 168 |
+
controlnet_canny_guidance_scale,
|
| 169 |
+
controlnet_canny_num_inference_step,
|
| 170 |
+
controlnet_canny_scheduler,
|
| 171 |
+
controlnet_canny_seed_generator,
|
| 172 |
+
],
|
| 173 |
+
outputs=[output_image],
|
| 174 |
+
)
|
diffusion_webui/diffusion_models/controlnet/controlnet_shuffle.py
ADDED
|
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from controlnet_aux import ContentShuffleDetector
|
| 4 |
+
from diffusers import ControlNetModel, StableDiffusionControlNetPipeline
|
| 5 |
+
from diffusers.utils import load_image
|
| 6 |
+
|
| 7 |
+
from diffusion_webui.utils.model_list import (
|
| 8 |
+
controlnet_shuffle_model_list,
|
| 9 |
+
stable_model_list,
|
| 10 |
+
)
|
| 11 |
+
from diffusion_webui.utils.scheduler_list import (
|
| 12 |
+
SCHEDULER_LIST,
|
| 13 |
+
get_scheduler_list,
|
| 14 |
+
)
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class StableDiffusionControlNetShuffleGenerator:
|
| 18 |
+
def __init__(self):
|
| 19 |
+
self.pipe = None
|
| 20 |
+
|
| 21 |
+
def load_model(self, stable_model_path, controlnet_model_path, scheduler):
|
| 22 |
+
if self.pipe is None:
|
| 23 |
+
controlnet = ControlNetModel.from_pretrained(
|
| 24 |
+
controlnet_model_path, torch_dtype=torch.float16
|
| 25 |
+
)
|
| 26 |
+
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 27 |
+
pretrained_model_name_or_path=stable_model_path,
|
| 28 |
+
controlnet=controlnet,
|
| 29 |
+
safety_checker=None,
|
| 30 |
+
torch_dtype=torch.float16,
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
self.pipe = get_scheduler_list(pipe=self.pipe, scheduler=scheduler)
|
| 34 |
+
self.pipe.to("cuda")
|
| 35 |
+
self.pipe.enable_xformers_memory_efficient_attention()
|
| 36 |
+
|
| 37 |
+
return self.pipe
|
| 38 |
+
|
| 39 |
+
def controlnet_shuffle(
|
| 40 |
+
self,
|
| 41 |
+
image_path: str,
|
| 42 |
+
):
|
| 43 |
+
image = load_image(image_path)
|
| 44 |
+
control_image = ContentShuffleDetector()(image)
|
| 45 |
+
return control_image
|
| 46 |
+
|
| 47 |
+
def generate_image(
|
| 48 |
+
self,
|
| 49 |
+
image_path: str,
|
| 50 |
+
stable_model_path: str,
|
| 51 |
+
controlnet_model_path: str,
|
| 52 |
+
prompt: str,
|
| 53 |
+
negative_prompt: str,
|
| 54 |
+
num_images_per_prompt: int,
|
| 55 |
+
guidance_scale: int,
|
| 56 |
+
num_inference_step: int,
|
| 57 |
+
scheduler: str,
|
| 58 |
+
seed_generator: int,
|
| 59 |
+
):
|
| 60 |
+
pipe = self.load_model(
|
| 61 |
+
stable_model_path=stable_model_path,
|
| 62 |
+
controlnet_model_path=controlnet_model_path,
|
| 63 |
+
scheduler=scheduler,
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
image = self.controlnet_shuffle(image_path)
|
| 67 |
+
|
| 68 |
+
if seed_generator == 0:
|
| 69 |
+
random_seed = torch.randint(0, 1000000, (1,))
|
| 70 |
+
generator = torch.manual_seed(random_seed)
|
| 71 |
+
else:
|
| 72 |
+
generator = torch.manual_seed(seed_generator)
|
| 73 |
+
|
| 74 |
+
output = pipe(
|
| 75 |
+
prompt=prompt,
|
| 76 |
+
image=image,
|
| 77 |
+
negative_prompt=negative_prompt,
|
| 78 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 79 |
+
num_inference_steps=num_inference_step,
|
| 80 |
+
guidance_scale=guidance_scale,
|
| 81 |
+
generator=generator,
|
| 82 |
+
).images
|
| 83 |
+
|
| 84 |
+
return output
|
| 85 |
+
|
| 86 |
+
def app():
|
| 87 |
+
with gr.Blocks():
|
| 88 |
+
with gr.Row():
|
| 89 |
+
with gr.Column():
|
| 90 |
+
controlnet_canny_image_file = gr.Image(
|
| 91 |
+
type="filepath", label="Image"
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
controlnet_canny_prompt = gr.Textbox(
|
| 95 |
+
lines=1,
|
| 96 |
+
placeholder="Prompt",
|
| 97 |
+
show_label=False,
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
controlnet_canny_negative_prompt = gr.Textbox(
|
| 101 |
+
lines=1,
|
| 102 |
+
placeholder="Negative Prompt",
|
| 103 |
+
show_label=False,
|
| 104 |
+
)
|
| 105 |
+
with gr.Row():
|
| 106 |
+
with gr.Column():
|
| 107 |
+
controlnet_canny_stable_model_id = gr.Dropdown(
|
| 108 |
+
choices=stable_model_list,
|
| 109 |
+
value=stable_model_list[0],
|
| 110 |
+
label="Stable Model Id",
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
controlnet_canny_guidance_scale = gr.Slider(
|
| 114 |
+
minimum=0.1,
|
| 115 |
+
maximum=15,
|
| 116 |
+
step=0.1,
|
| 117 |
+
value=7.5,
|
| 118 |
+
label="Guidance Scale",
|
| 119 |
+
)
|
| 120 |
+
controlnet_canny_num_inference_step = gr.Slider(
|
| 121 |
+
minimum=1,
|
| 122 |
+
maximum=100,
|
| 123 |
+
step=1,
|
| 124 |
+
value=50,
|
| 125 |
+
label="Num Inference Step",
|
| 126 |
+
)
|
| 127 |
+
controlnet_canny_num_images_per_prompt = gr.Slider(
|
| 128 |
+
minimum=1,
|
| 129 |
+
maximum=10,
|
| 130 |
+
step=1,
|
| 131 |
+
value=1,
|
| 132 |
+
label="Number Of Images",
|
| 133 |
+
)
|
| 134 |
+
with gr.Row():
|
| 135 |
+
with gr.Column():
|
| 136 |
+
controlnet_canny_model_id = gr.Dropdown(
|
| 137 |
+
choices=controlnet_shuffle_model_list,
|
| 138 |
+
value=controlnet_shuffle_model_list[0],
|
| 139 |
+
label="ControlNet Model Id",
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
controlnet_canny_scheduler = gr.Dropdown(
|
| 143 |
+
choices=SCHEDULER_LIST,
|
| 144 |
+
value=SCHEDULER_LIST[0],
|
| 145 |
+
label="Scheduler",
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
controlnet_canny_seed_generator = gr.Number(
|
| 149 |
+
value=0,
|
| 150 |
+
label="Seed Generator",
|
| 151 |
+
)
|
| 152 |
+
controlnet_canny_predict = gr.Button(value="Generator")
|
| 153 |
+
|
| 154 |
+
with gr.Column():
|
| 155 |
+
output_image = gr.Gallery(
|
| 156 |
+
label="Generated images",
|
| 157 |
+
show_label=False,
|
| 158 |
+
elem_id="gallery",
|
| 159 |
+
).style(grid=(1, 2))
|
| 160 |
+
|
| 161 |
+
controlnet_canny_predict.click(
|
| 162 |
+
fn=StableDiffusionControlNetShuffleGenerator().generate_image,
|
| 163 |
+
inputs=[
|
| 164 |
+
controlnet_canny_image_file,
|
| 165 |
+
controlnet_canny_stable_model_id,
|
| 166 |
+
controlnet_canny_model_id,
|
| 167 |
+
controlnet_canny_prompt,
|
| 168 |
+
controlnet_canny_negative_prompt,
|
| 169 |
+
controlnet_canny_num_images_per_prompt,
|
| 170 |
+
controlnet_canny_guidance_scale,
|
| 171 |
+
controlnet_canny_num_inference_step,
|
| 172 |
+
controlnet_canny_scheduler,
|
| 173 |
+
controlnet_canny_seed_generator,
|
| 174 |
+
],
|
| 175 |
+
outputs=[output_image],
|
| 176 |
+
)
|
diffusion_webui/diffusion_models/controlnet/controlnet_softedge.py
ADDED
|
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from controlnet_aux import HEDdetector, PidiNetDetector
|
| 4 |
+
from diffusers import ControlNetModel, StableDiffusionControlNetPipeline
|
| 5 |
+
from diffusers.utils import load_image
|
| 6 |
+
|
| 7 |
+
from diffusion_webui.utils.model_list import (
|
| 8 |
+
controlnet_softedge_model_list,
|
| 9 |
+
stable_model_list,
|
| 10 |
+
)
|
| 11 |
+
from diffusion_webui.utils.scheduler_list import (
|
| 12 |
+
SCHEDULER_LIST,
|
| 13 |
+
get_scheduler_list,
|
| 14 |
+
)
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class StableDiffusionControlNetSoftEdgeGenerator:
|
| 18 |
+
def __init__(self):
|
| 19 |
+
self.pipe = None
|
| 20 |
+
|
| 21 |
+
def load_model(self, stable_model_path, controlnet_model_path, scheduler):
|
| 22 |
+
if self.pipe is None:
|
| 23 |
+
controlnet = ControlNetModel.from_pretrained(
|
| 24 |
+
controlnet_model_path, torch_dtype=torch.float16
|
| 25 |
+
)
|
| 26 |
+
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 27 |
+
pretrained_model_name_or_path=stable_model_path,
|
| 28 |
+
controlnet=controlnet,
|
| 29 |
+
safety_checker=None,
|
| 30 |
+
torch_dtype=torch.float16,
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
self.pipe = get_scheduler_list(pipe=self.pipe, scheduler=scheduler)
|
| 34 |
+
self.pipe.to("cuda")
|
| 35 |
+
self.pipe.enable_xformers_memory_efficient_attention()
|
| 36 |
+
|
| 37 |
+
return self.pipe
|
| 38 |
+
|
| 39 |
+
def controlnet_softedge(
|
| 40 |
+
self,
|
| 41 |
+
image_path: str,
|
| 42 |
+
):
|
| 43 |
+
|
| 44 |
+
image = load_image(image_path)
|
| 45 |
+
processor = HEDdetector.from_pretrained("lllyasviel/Annotators")
|
| 46 |
+
processor = PidiNetDetector.from_pretrained("lllyasviel/Annotators")
|
| 47 |
+
control_image = processor(image, safe=True)
|
| 48 |
+
return control_image
|
| 49 |
+
|
| 50 |
+
def generate_image(
|
| 51 |
+
self,
|
| 52 |
+
image_path: str,
|
| 53 |
+
stable_model_path: str,
|
| 54 |
+
controlnet_model_path: str,
|
| 55 |
+
prompt: str,
|
| 56 |
+
negative_prompt: str,
|
| 57 |
+
num_images_per_prompt: int,
|
| 58 |
+
guidance_scale: int,
|
| 59 |
+
num_inference_step: int,
|
| 60 |
+
scheduler: str,
|
| 61 |
+
seed_generator: int,
|
| 62 |
+
):
|
| 63 |
+
pipe = self.load_model(
|
| 64 |
+
stable_model_path=stable_model_path,
|
| 65 |
+
controlnet_model_path=controlnet_model_path,
|
| 66 |
+
scheduler=scheduler,
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
image = self.controlnet_softedge(image_path)
|
| 70 |
+
|
| 71 |
+
if seed_generator == 0:
|
| 72 |
+
random_seed = torch.randint(0, 1000000, (1,))
|
| 73 |
+
generator = torch.manual_seed(random_seed)
|
| 74 |
+
else:
|
| 75 |
+
generator = torch.manual_seed(seed_generator)
|
| 76 |
+
|
| 77 |
+
output = pipe(
|
| 78 |
+
prompt=prompt,
|
| 79 |
+
image=image,
|
| 80 |
+
negative_prompt=negative_prompt,
|
| 81 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 82 |
+
num_inference_steps=num_inference_step,
|
| 83 |
+
guidance_scale=guidance_scale,
|
| 84 |
+
generator=generator,
|
| 85 |
+
).images
|
| 86 |
+
|
| 87 |
+
return output
|
| 88 |
+
|
| 89 |
+
def app():
|
| 90 |
+
with gr.Blocks():
|
| 91 |
+
with gr.Row():
|
| 92 |
+
with gr.Column():
|
| 93 |
+
controlnet_canny_image_file = gr.Image(
|
| 94 |
+
type="filepath", label="Image"
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
controlnet_canny_prompt = gr.Textbox(
|
| 98 |
+
lines=1,
|
| 99 |
+
placeholder="Prompt",
|
| 100 |
+
show_label=False,
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
controlnet_canny_negative_prompt = gr.Textbox(
|
| 104 |
+
lines=1,
|
| 105 |
+
placeholder="Negative Prompt",
|
| 106 |
+
show_label=False,
|
| 107 |
+
)
|
| 108 |
+
with gr.Row():
|
| 109 |
+
with gr.Column():
|
| 110 |
+
controlnet_canny_stable_model_id = gr.Dropdown(
|
| 111 |
+
choices=stable_model_list,
|
| 112 |
+
value=stable_model_list[0],
|
| 113 |
+
label="Stable Model Id",
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
controlnet_canny_guidance_scale = gr.Slider(
|
| 117 |
+
minimum=0.1,
|
| 118 |
+
maximum=15,
|
| 119 |
+
step=0.1,
|
| 120 |
+
value=7.5,
|
| 121 |
+
label="Guidance Scale",
|
| 122 |
+
)
|
| 123 |
+
controlnet_canny_num_inference_step = gr.Slider(
|
| 124 |
+
minimum=1,
|
| 125 |
+
maximum=100,
|
| 126 |
+
step=1,
|
| 127 |
+
value=50,
|
| 128 |
+
label="Num Inference Step",
|
| 129 |
+
)
|
| 130 |
+
controlnet_canny_num_images_per_prompt = gr.Slider(
|
| 131 |
+
minimum=1,
|
| 132 |
+
maximum=10,
|
| 133 |
+
step=1,
|
| 134 |
+
value=1,
|
| 135 |
+
label="Number Of Images",
|
| 136 |
+
)
|
| 137 |
+
with gr.Row():
|
| 138 |
+
with gr.Column():
|
| 139 |
+
controlnet_canny_model_id = gr.Dropdown(
|
| 140 |
+
choices=controlnet_softedge_model_list,
|
| 141 |
+
value=controlnet_softedge_model_list[0],
|
| 142 |
+
label="ControlNet Model Id",
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
+
controlnet_canny_scheduler = gr.Dropdown(
|
| 146 |
+
choices=SCHEDULER_LIST,
|
| 147 |
+
value=SCHEDULER_LIST[0],
|
| 148 |
+
label="Scheduler",
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
+
controlnet_canny_seed_generator = gr.Number(
|
| 152 |
+
value=0,
|
| 153 |
+
label="Seed Generator",
|
| 154 |
+
)
|
| 155 |
+
controlnet_canny_predict = gr.Button(value="Generator")
|
| 156 |
+
|
| 157 |
+
with gr.Column():
|
| 158 |
+
output_image = gr.Gallery(
|
| 159 |
+
label="Generated images",
|
| 160 |
+
show_label=False,
|
| 161 |
+
elem_id="gallery",
|
| 162 |
+
).style(grid=(1, 2))
|
| 163 |
+
|
| 164 |
+
controlnet_canny_predict.click(
|
| 165 |
+
fn=StableDiffusionControlNetSoftEdgeGenerator().generate_image,
|
| 166 |
+
inputs=[
|
| 167 |
+
controlnet_canny_image_file,
|
| 168 |
+
controlnet_canny_stable_model_id,
|
| 169 |
+
controlnet_canny_model_id,
|
| 170 |
+
controlnet_canny_prompt,
|
| 171 |
+
controlnet_canny_negative_prompt,
|
| 172 |
+
controlnet_canny_num_images_per_prompt,
|
| 173 |
+
controlnet_canny_guidance_scale,
|
| 174 |
+
controlnet_canny_num_inference_step,
|
| 175 |
+
controlnet_canny_scheduler,
|
| 176 |
+
controlnet_canny_seed_generator,
|
| 177 |
+
],
|
| 178 |
+
outputs=[output_image],
|
| 179 |
+
)
|
diffusion_webui/diffusion_models/stable_diffusion/__init__.py
CHANGED
|
@@ -1,3 +1,9 @@
|
|
| 1 |
-
from diffusion_webui.diffusion_models.stable_diffusion.
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from diffusion_webui.diffusion_models.stable_diffusion.img2img_app import (
|
| 2 |
+
StableDiffusionImage2ImageGenerator,
|
| 3 |
+
)
|
| 4 |
+
from diffusion_webui.diffusion_models.stable_diffusion.inpaint_app import (
|
| 5 |
+
StableDiffusionInpaintGenerator,
|
| 6 |
+
)
|
| 7 |
+
from diffusion_webui.diffusion_models.stable_diffusion.text2img_app import (
|
| 8 |
+
StableDiffusionText2ImageGenerator,
|
| 9 |
+
)
|
diffusion_webui/upscaler_models/__init__.py
CHANGED
|
@@ -1 +1,3 @@
|
|
| 1 |
-
from diffusion_webui.upscaler_models.codeformer_upscaler import
|
|
|
|
|
|
|
|
|
| 1 |
+
from diffusion_webui.upscaler_models.codeformer_upscaler import (
|
| 2 |
+
CodeformerUpscalerGenerator,
|
| 3 |
+
)
|
diffusion_webui/upscaler_models/codeformer_upscaler.py
CHANGED
|
@@ -1,5 +1,4 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from codeformer.app import inference_app
|
| 3 |
|
| 4 |
|
| 5 |
class CodeformerUpscalerGenerator:
|
|
@@ -11,6 +10,7 @@ class CodeformerUpscalerGenerator:
|
|
| 11 |
upscale: int,
|
| 12 |
codeformer_fidelity: int,
|
| 13 |
):
|
|
|
|
| 14 |
|
| 15 |
pipe = inference_app(
|
| 16 |
image=image_path,
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
|
| 3 |
|
| 4 |
class CodeformerUpscalerGenerator:
|
|
|
|
| 10 |
upscale: int,
|
| 11 |
codeformer_fidelity: int,
|
| 12 |
):
|
| 13 |
+
from codeformer.app import inference_app
|
| 14 |
|
| 15 |
pipe = inference_app(
|
| 16 |
image=image_path,
|
diffusion_webui/utils/model_list.py
CHANGED
|
@@ -5,14 +5,13 @@ stable_model_list = [
|
|
| 5 |
"wavymulder/Analog-Diffusion",
|
| 6 |
"dreamlike-art/dreamlike-diffusion-1.0",
|
| 7 |
"gsdf/Counterfeit-V2.5",
|
| 8 |
-
"dreamlike-art/dreamlike-photoreal-2.0"
|
| 9 |
]
|
| 10 |
|
| 11 |
controlnet_canny_model_list = [
|
| 12 |
"lllyasviel/sd-controlnet-canny",
|
| 13 |
"lllyasviel/control_v11p_sd15_canny",
|
| 14 |
"thibaud/controlnet-sd21-canny-diffusers",
|
| 15 |
-
|
| 16 |
]
|
| 17 |
|
| 18 |
controlnet_depth_model_list = [
|
|
@@ -57,3 +56,23 @@ controlnet_seg_model_list = [
|
|
| 57 |
"lllyasviel/sd-controlnet-seg",
|
| 58 |
"lllyasviel/control_v11p_sd15_seg",
|
| 59 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
"wavymulder/Analog-Diffusion",
|
| 6 |
"dreamlike-art/dreamlike-diffusion-1.0",
|
| 7 |
"gsdf/Counterfeit-V2.5",
|
| 8 |
+
"dreamlike-art/dreamlike-photoreal-2.0",
|
| 9 |
]
|
| 10 |
|
| 11 |
controlnet_canny_model_list = [
|
| 12 |
"lllyasviel/sd-controlnet-canny",
|
| 13 |
"lllyasviel/control_v11p_sd15_canny",
|
| 14 |
"thibaud/controlnet-sd21-canny-diffusers",
|
|
|
|
| 15 |
]
|
| 16 |
|
| 17 |
controlnet_depth_model_list = [
|
|
|
|
| 56 |
"lllyasviel/sd-controlnet-seg",
|
| 57 |
"lllyasviel/control_v11p_sd15_seg",
|
| 58 |
]
|
| 59 |
+
|
| 60 |
+
controlnet_shuffle_model_list = [
|
| 61 |
+
"lllyasviel/control_v11e_sd15_shuffle",
|
| 62 |
+
]
|
| 63 |
+
|
| 64 |
+
controlnet_pix2pix_model_list = [
|
| 65 |
+
"lllyasviel/control_v11e_sd15_ip2p",
|
| 66 |
+
]
|
| 67 |
+
|
| 68 |
+
controlnet_lineart_model_list = [
|
| 69 |
+
"ControlNet-1-1-preview/control_v11p_sd15_lineart",
|
| 70 |
+
]
|
| 71 |
+
|
| 72 |
+
controlnet_lineart_anime_model_list = [
|
| 73 |
+
"lllyasviel/control_v11p_sd15s2_lineart_anime",
|
| 74 |
+
]
|
| 75 |
+
|
| 76 |
+
controlnet_softedge_model_list = [
|
| 77 |
+
"lllyasviel/control_v11p_sd15_softedge",
|
| 78 |
+
]
|