Spaces:
Running
Running
import gradio as gr | |
import random | |
import os | |
from PIL import Image | |
from typing import Optional, Dict, Tuple | |
from huggingface_hub import InferenceClient | |
# Project by Nymbo | |
API_TOKEN = os.getenv("HF_READ_TOKEN") | |
timeout = 100 | |
def flux_krea_generate( | |
prompt: str, | |
negative_prompt: str = "(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos", | |
steps: int = 35, | |
cfg_scale: float = 7.0, | |
sampler: str = "DPM++ 2M Karras", | |
seed: int = -1, | |
strength: float = 0.7, | |
width: int = 1024, | |
height: int = 1024, | |
) -> Optional[Image.Image]: | |
"""Generate a single image from a text prompt using FLUX.1-Krea-dev. | |
Contract (for UI): | |
- Inputs: prompt (required), optional tuning params below. No input image used. | |
- Output: a PIL.Image for Gradio image component wiring. | |
- Errors: raises gr.Error on auth/model/service issues. | |
Args: | |
prompt: Required. Describes what to create. Keep it specific and concise. | |
negative_prompt: Phrases/objects to avoid in the output. | |
steps: Number of diffusion steps (1-100). Higher may improve detail but is slower. | |
cfg_scale: Classifier-free guidance scale (1-20). Higher forces closer adherence to prompt. | |
sampler: Sampler algorithm label (UI only; provider may ignore or auto-select). | |
seed: Set a deterministic seed (>=0). Use -1 to randomize per call. | |
strength: Kept for parity; has no effect without an input image (0-1). | |
width: Output width in pixels (64-1216). Prefer multiples of 32. | |
height: Output height in pixels (64-1216). Prefer multiples of 32. | |
Returns: | |
PIL.Image or None if prompt is empty. | |
""" | |
if prompt == "" or prompt is None: | |
return None | |
key = random.randint(0, 999) | |
# Add some extra flair to the prompt | |
enhanced_prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect." | |
print(f'\033[1mGeneration {key}:\033[0m {enhanced_prompt}') | |
try: | |
# Initialize the Hugging Face Inference Client | |
# Try different providers in order of preference | |
providers = ["auto", "replicate", "fal-ai"] | |
for provider in providers: | |
try: | |
client = InferenceClient( | |
api_key=API_TOKEN, | |
provider=provider | |
) | |
# Generate the image using the proper client | |
image = client.text_to_image( | |
prompt=enhanced_prompt, | |
negative_prompt=negative_prompt, | |
model="black-forest-labs/FLUX.1-Krea-dev", | |
width=width, | |
height=height, | |
num_inference_steps=steps, | |
guidance_scale=cfg_scale, | |
seed=seed if seed != -1 else random.randint(1, 1000000000) | |
) | |
print(f'\033[1mGeneration {key} completed with {provider}!\033[0m ({enhanced_prompt})') | |
return image | |
except Exception as provider_error: | |
print(f"Provider {provider} failed: {provider_error}") | |
if provider == providers[-1]: # Last provider | |
raise provider_error | |
continue | |
except Exception as e: | |
print(f"Error during image generation: {e}") | |
if "404" in str(e): | |
raise gr.Error("Model not found. Please ensure the FLUX.1-Krea-dev model is accessible with your API token.") | |
elif "503" in str(e): | |
raise gr.Error("The model is currently being loaded. Please try again in a moment.") | |
elif "401" in str(e) or "403" in str(e): | |
raise gr.Error("Authentication failed. Please check your HF_READ_TOKEN environment variable.") | |
else: | |
raise gr.Error(f"Image generation failed: {str(e)}") | |
return None | |
def _space_base_url() -> Optional[str]: | |
"""Return the public base URL of this Space if available. | |
Looks up SPACE_ID (e.g. "username/space-name") and converts it to | |
the public subdomain "https://username-space-name.hf.space". | |
If SPACE_ID is not set, optionally respects HF_SPACE_BASE_URL. | |
""" | |
# Explicit override if provided | |
explicit = os.getenv("HF_SPACE_BASE_URL") | |
if explicit: | |
return explicit.rstrip("/") | |
space_id = os.getenv("SPACE_ID") | |
if not space_id: | |
return None | |
sub = space_id.replace("/", "-") | |
return f"https://{sub}.hf.space" | |
def _save_image_and_url(image: Image.Image, key: int) -> Tuple[str, Optional[str]]: | |
"""Save the image to a temporary path and construct a public URL if running on Spaces. | |
Returns (local_path, public_url_or_None). | |
""" | |
# Ensure POSIX-like temp dir (Spaces is Linux). Still works locally. | |
out_dir = os.path.join("/tmp", "flux-krea-outputs") | |
os.makedirs(out_dir, exist_ok=True) | |
file_path = os.path.join(out_dir, f"flux_{key}.png") | |
image.save(file_path) | |
base_url = _space_base_url() | |
public_url = None | |
if base_url: | |
# Gradio serves local files via /file=<absolute-path> | |
# Normalize backslashes to forward slashes in case of local dev on Windows | |
posix_path = file_path.replace("\\", "/") | |
public_url = f"{base_url}/file={posix_path}" | |
return file_path, public_url | |
def flux_krea_generate_mcp( | |
prompt: str, | |
negative_prompt: str = "(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos", | |
steps: int = 35, | |
cfg_scale: float = 7, | |
sampler: str = "DPM++ 2M Karras", | |
seed: int = -1, | |
strength: float = 0.7, | |
width: int = 1024, | |
height: int = 1024, | |
) -> Dict[str, object]: | |
"""Generate an image (MCP tool) and return a JSON payload with a public URL. | |
This endpoint is tailored for Model Context Protocol (MCP) clients per the | |
latest Hugging Face MCP Space guidance (see hf-docs-search: "Spaces as MCP servers"). | |
Inputs: | |
- prompt (str, required): Description of the desired image. | |
- negative_prompt (str): Items to avoid in the generation. | |
- steps (int, 1-100): Denoising steps. Higher is slower and may add detail. | |
- cfg_scale (float, 1-20): Guidance strength. Higher adheres more to the prompt. | |
- sampler (str): Sampler label (informational; provider may auto-select). | |
- seed (int): -1 for random per call; otherwise a deterministic seed >= 0. | |
- strength (float, 0-1): No-op in pure text-to-image; kept for cross-app parity. | |
- width (int, 64-1216): Output width (prefer multiples of 32). | |
- height (int, 64-1216): Output height (prefer multiples of 32). | |
Returns (JSON): | |
- image_path (str): Absolute path to the saved image on the Space VM. | |
- image_url (str|None): Publicly accessible URL to the image on the Space | |
(present when running on Spaces; None when running locally). | |
- seed (int): The seed used for this run (randomized if input was -1). | |
- width (int), height (int): Echo of output dimensions. | |
- sampler (str): Echo of requested sampler. | |
Error Modes: | |
- Raises a Gradio-friendly error with a concise message for common HTTP | |
failure codes (401/403 auth; 404 model; 503 warmup). | |
""" | |
if not prompt: | |
raise gr.Error("'prompt' is required and cannot be empty.") | |
# Reuse core generator for image creation | |
image = flux_krea_generate( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
steps=steps, | |
cfg_scale=cfg_scale, | |
sampler=sampler, | |
seed=seed, | |
strength=strength, | |
width=width, | |
height=height, | |
) | |
if image is None: | |
raise gr.Error("No image generated.") | |
# Save and build URLs | |
key = random.randint(0, 999) | |
file_path, public_url = _save_image_and_url(image, key) | |
# Expose URL explicitly for MCP clients (LLMs need a resolvable URL) | |
return { | |
"image_path": file_path, | |
"image_url": public_url, | |
"seed": seed, | |
"width": width, | |
"height": height, | |
"sampler": sampler, | |
} | |
# CSS to style the app | |
css = """ | |
#app-container { | |
max-width: 800px; | |
margin-left: auto; | |
margin-right: auto; | |
} | |
""" | |
# Build the Gradio UI with Blocks | |
with gr.Blocks(theme='Nymbo/Nymbo_Theme', css=css) as app: | |
# Add a title to the app | |
gr.HTML("<center><h1>FLUX.1-Krea-dev</h1></center>") | |
gr.HTML("<center><p>High-quality image generation via Model Context Protocol</p></center>") | |
# Container for all the UI elements | |
with gr.Column(elem_id="app-container"): | |
# Add a text input for the main prompt | |
with gr.Row(): | |
with gr.Column(elem_id="prompt-container"): | |
with gr.Row(): | |
text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=2, elem_id="prompt-text-input") | |
# Accordion for advanced settings | |
with gr.Row(): | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos", lines=3, elem_id="negative-prompt-text-input") | |
with gr.Row(): | |
width = gr.Slider(label="Width", value=1024, minimum=64, maximum=1216, step=32) | |
height = gr.Slider(label="Height", value=1024, minimum=64, maximum=1216, step=32) | |
steps = gr.Slider(label="Sampling steps", value=35, minimum=1, maximum=100, step=1) | |
cfg = gr.Slider(label="CFG Scale", value=7, minimum=1, maximum=20, step=1) | |
strength = gr.Slider(label="Strength", value=0.7, minimum=0, maximum=1, step=0.001) | |
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1) # Setting the seed to -1 will make it random | |
method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"]) | |
# Add a button to trigger the image generation | |
with gr.Row(): | |
text_button = gr.Button("Run", variant='primary', elem_id="gen-button") | |
# Image output area to display the generated image | |
with gr.Row(): | |
# Output component only; no input image is required by the tool | |
image_output = gr.Image(label="Image Output", elem_id="gallery") | |
# Bind the button to the flux_krea_generate function for the UI only | |
# Hide this event as an MCP tool to avoid schema confusion (UI wires image output) | |
text_button.click( | |
flux_krea_generate, | |
inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, strength, width, height], | |
outputs=image_output, | |
show_api=False, | |
api_description=False, | |
) | |
# Expose a dedicated MCP/API endpoint with a clear schema (text-to-image only) | |
# This wrapper returns both a local file path and a fully-qualified public URL | |
# when running on Spaces so LLMs can access the finished image. | |
gr.api( | |
flux_krea_generate_mcp, | |
api_name="generate_image", | |
api_description=( | |
"Generate an image from a text prompt using FLUX.1-Krea-dev. " | |
"Returns JSON with image_path and image_url (public URL when on Spaces)." | |
), | |
) | |
# Launch the Gradio app with MCP server enabled | |
app.launch(show_api=True, share=False, mcp_server=True) |