| import torch.nn as nn | |
| def weights_init_D(m): | |
| classname = m.__class__.__name__ | |
| if classname.find('Conv') != -1: | |
| nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='leaky_relu') | |
| # nn.init.constant_(m.bias, 0) | |
| elif classname.find('BatchNorm') != -1: | |
| nn.init.constant_(m.weight, 1) | |
| nn.init.constant_(m.bias, 0) | |
| def weights_init_G(m): | |
| classname = m.__class__.__name__ | |
| if classname.find('Conv') != -1: | |
| nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='leaky_relu') | |
| # nn.init.constant_(m.bias, 0) | |
| elif classname.find('BatchNorm') != -1: | |
| nn.init.constant_(m.weight, 1) | |
| nn.init.constant_(m.bias, 0) | |