Spaces:
Runtime error
Runtime error
File size: 1,467 Bytes
d518747 b53bd23 d518747 b53bd23 d518747 b53bd23 d518747 b53bd23 d518747 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
import gradio as gr
import pandas as pd
import pyarrow as pa
import pyarrow.parquet as pq
from PIL import Image
import io
import base64
def image_to_parquet(files):
# List to store image data
image_data = []
for file_info in files:
# Read image
with open(file_info.name, "rb") as image_file:
img = Image.open(image_file)
buffered = io.BytesIO()
img.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
# Store image data and name
image_data.append({"name": file_info.orig_name, "data": img_str})
# Create DataFrame
df = pd.DataFrame(image_data)
# Convert DataFrame to PyArrow Table
table = pa.Table.from_pandas(df)
# Save table as Parquet file
parquet_buffer = io.BytesIO()
pq.write_table(table, parquet_buffer)
# Return Parquet file
parquet_buffer.seek(0)
return parquet_buffer
def download_parquet(file):
return file
# Gradio interface
with gr.Blocks() as demo:
with gr.Row():
image_input = gr.File(label="Upload Images", type="filepath", file_count="multiple", file_types=["image"])
download_button = gr.File(label="Download Parquet File", interactive=False)
convert_button = gr.Button("Convert to Parquet")
convert_button.click(fn=image_to_parquet, inputs=[image_input], outputs=[download_button])
demo.launch() |