| import torch | |
| from torch import nn | |
| import torch.nn.functional as F | |
| from . import layers_new | |
| class BaseNet(nn.Module): | |
| def __init__( | |
| self, nin, nout, nin_lstm, nout_lstm, dilations=((4, 2), (8, 4), (12, 6)) | |
| ): | |
| super(BaseNet, self).__init__() | |
| self.enc1 = layers_new.Conv2DBNActiv(nin, nout, 3, 1, 1) | |
| self.enc2 = layers_new.Encoder(nout, nout * 2, 3, 2, 1) | |
| self.enc3 = layers_new.Encoder(nout * 2, nout * 4, 3, 2, 1) | |
| self.enc4 = layers_new.Encoder(nout * 4, nout * 6, 3, 2, 1) | |
| self.enc5 = layers_new.Encoder(nout * 6, nout * 8, 3, 2, 1) | |
| self.aspp = layers_new.ASPPModule(nout * 8, nout * 8, dilations, dropout=True) | |
| self.dec4 = layers_new.Decoder(nout * (6 + 8), nout * 6, 3, 1, 1) | |
| self.dec3 = layers_new.Decoder(nout * (4 + 6), nout * 4, 3, 1, 1) | |
| self.dec2 = layers_new.Decoder(nout * (2 + 4), nout * 2, 3, 1, 1) | |
| self.lstm_dec2 = layers_new.LSTMModule(nout * 2, nin_lstm, nout_lstm) | |
| self.dec1 = layers_new.Decoder(nout * (1 + 2) + 1, nout * 1, 3, 1, 1) | |
| def __call__(self, x): | |
| e1 = self.enc1(x) | |
| e2 = self.enc2(e1) | |
| e3 = self.enc3(e2) | |
| e4 = self.enc4(e3) | |
| e5 = self.enc5(e4) | |
| h = self.aspp(e5) | |
| h = self.dec4(h, e4) | |
| h = self.dec3(h, e3) | |
| h = self.dec2(h, e2) | |
| h = torch.cat([h, self.lstm_dec2(h)], dim=1) | |
| h = self.dec1(h, e1) | |
| return h | |
| class CascadedNet(nn.Module): | |
| def __init__(self, n_fft, nout=32, nout_lstm=128): | |
| super(CascadedNet, self).__init__() | |
| self.max_bin = n_fft // 2 | |
| self.output_bin = n_fft // 2 + 1 | |
| self.nin_lstm = self.max_bin // 2 | |
| self.offset = 64 | |
| self.stg1_low_band_net = nn.Sequential( | |
| BaseNet(2, nout // 2, self.nin_lstm // 2, nout_lstm), | |
| layers_new.Conv2DBNActiv(nout // 2, nout // 4, 1, 1, 0), | |
| ) | |
| self.stg1_high_band_net = BaseNet( | |
| 2, nout // 4, self.nin_lstm // 2, nout_lstm // 2 | |
| ) | |
| self.stg2_low_band_net = nn.Sequential( | |
| BaseNet(nout // 4 + 2, nout, self.nin_lstm // 2, nout_lstm), | |
| layers_new.Conv2DBNActiv(nout, nout // 2, 1, 1, 0), | |
| ) | |
| self.stg2_high_band_net = BaseNet( | |
| nout // 4 + 2, nout // 2, self.nin_lstm // 2, nout_lstm // 2 | |
| ) | |
| self.stg3_full_band_net = BaseNet( | |
| 3 * nout // 4 + 2, nout, self.nin_lstm, nout_lstm | |
| ) | |
| self.out = nn.Conv2d(nout, 2, 1, bias=False) | |
| self.aux_out = nn.Conv2d(3 * nout // 4, 2, 1, bias=False) | |
| def forward(self, x): | |
| x = x[:, :, : self.max_bin] | |
| bandw = x.size()[2] // 2 | |
| l1_in = x[:, :, :bandw] | |
| h1_in = x[:, :, bandw:] | |
| l1 = self.stg1_low_band_net(l1_in) | |
| h1 = self.stg1_high_band_net(h1_in) | |
| aux1 = torch.cat([l1, h1], dim=2) | |
| l2_in = torch.cat([l1_in, l1], dim=1) | |
| h2_in = torch.cat([h1_in, h1], dim=1) | |
| l2 = self.stg2_low_band_net(l2_in) | |
| h2 = self.stg2_high_band_net(h2_in) | |
| aux2 = torch.cat([l2, h2], dim=2) | |
| f3_in = torch.cat([x, aux1, aux2], dim=1) | |
| f3 = self.stg3_full_band_net(f3_in) | |
| mask = torch.sigmoid(self.out(f3)) | |
| mask = F.pad( | |
| input=mask, | |
| pad=(0, 0, 0, self.output_bin - mask.size()[2]), | |
| mode="replicate", | |
| ) | |
| if self.training: | |
| aux = torch.cat([aux1, aux2], dim=1) | |
| aux = torch.sigmoid(self.aux_out(aux)) | |
| aux = F.pad( | |
| input=aux, | |
| pad=(0, 0, 0, self.output_bin - aux.size()[2]), | |
| mode="replicate", | |
| ) | |
| return mask, aux | |
| else: | |
| return mask | |
| def predict_mask(self, x): | |
| mask = self.forward(x) | |
| if self.offset > 0: | |
| mask = mask[:, :, :, self.offset : -self.offset] | |
| assert mask.size()[3] > 0 | |
| return mask | |
| def predict(self, x, aggressiveness=None): | |
| mask = self.forward(x) | |
| pred_mag = x * mask | |
| if self.offset > 0: | |
| pred_mag = pred_mag[:, :, :, self.offset : -self.offset] | |
| assert pred_mag.size()[3] > 0 | |
| return pred_mag | |