Spaces:
Paused
Paused
Upload 3 files
Browse files- models/attention.py +1245 -0
- models/resampler.py +304 -0
- models/transformer_sd3.py +375 -0
models/attention.py
ADDED
|
@@ -0,0 +1,1245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
from typing import Any, Dict, List, Optional, Tuple
|
| 15 |
+
|
| 16 |
+
import torch
|
| 17 |
+
import torch.nn.functional as F
|
| 18 |
+
from torch import nn
|
| 19 |
+
|
| 20 |
+
from diffusers.utils import deprecate, logging
|
| 21 |
+
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
| 22 |
+
from diffusers.models.activations import GEGLU, GELU, ApproximateGELU, FP32SiLU, SwiGLU
|
| 23 |
+
from diffusers.models.attention_processor import Attention, JointAttnProcessor2_0
|
| 24 |
+
from diffusers.models.embeddings import SinusoidalPositionalEmbedding
|
| 25 |
+
from diffusers.models.normalization import AdaLayerNorm, AdaLayerNormContinuous, AdaLayerNormZero, RMSNorm, SD35AdaLayerNormZeroX
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
logger = logging.get_logger(__name__)
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def _chunked_feed_forward(ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int):
|
| 32 |
+
# "feed_forward_chunk_size" can be used to save memory
|
| 33 |
+
if hidden_states.shape[chunk_dim] % chunk_size != 0:
|
| 34 |
+
raise ValueError(
|
| 35 |
+
f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
num_chunks = hidden_states.shape[chunk_dim] // chunk_size
|
| 39 |
+
ff_output = torch.cat(
|
| 40 |
+
[ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
|
| 41 |
+
dim=chunk_dim,
|
| 42 |
+
)
|
| 43 |
+
return ff_output
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
@maybe_allow_in_graph
|
| 47 |
+
class GatedSelfAttentionDense(nn.Module):
|
| 48 |
+
r"""
|
| 49 |
+
A gated self-attention dense layer that combines visual features and object features.
|
| 50 |
+
|
| 51 |
+
Parameters:
|
| 52 |
+
query_dim (`int`): The number of channels in the query.
|
| 53 |
+
context_dim (`int`): The number of channels in the context.
|
| 54 |
+
n_heads (`int`): The number of heads to use for attention.
|
| 55 |
+
d_head (`int`): The number of channels in each head.
|
| 56 |
+
"""
|
| 57 |
+
|
| 58 |
+
def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int):
|
| 59 |
+
super().__init__()
|
| 60 |
+
|
| 61 |
+
# we need a linear projection since we need cat visual feature and obj feature
|
| 62 |
+
self.linear = nn.Linear(context_dim, query_dim)
|
| 63 |
+
|
| 64 |
+
self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head)
|
| 65 |
+
self.ff = FeedForward(query_dim, activation_fn="geglu")
|
| 66 |
+
|
| 67 |
+
self.norm1 = nn.LayerNorm(query_dim)
|
| 68 |
+
self.norm2 = nn.LayerNorm(query_dim)
|
| 69 |
+
|
| 70 |
+
self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0)))
|
| 71 |
+
self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0)))
|
| 72 |
+
|
| 73 |
+
self.enabled = True
|
| 74 |
+
|
| 75 |
+
def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor:
|
| 76 |
+
if not self.enabled:
|
| 77 |
+
return x
|
| 78 |
+
|
| 79 |
+
n_visual = x.shape[1]
|
| 80 |
+
objs = self.linear(objs)
|
| 81 |
+
|
| 82 |
+
x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :]
|
| 83 |
+
x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x))
|
| 84 |
+
|
| 85 |
+
return x
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
@maybe_allow_in_graph
|
| 89 |
+
class JointTransformerBlock(nn.Module):
|
| 90 |
+
r"""
|
| 91 |
+
A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.
|
| 92 |
+
|
| 93 |
+
Reference: https://arxiv.org/abs/2403.03206
|
| 94 |
+
|
| 95 |
+
Parameters:
|
| 96 |
+
dim (`int`): The number of channels in the input and output.
|
| 97 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
| 98 |
+
attention_head_dim (`int`): The number of channels in each head.
|
| 99 |
+
context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
|
| 100 |
+
processing of `context` conditions.
|
| 101 |
+
"""
|
| 102 |
+
|
| 103 |
+
def __init__(
|
| 104 |
+
self,
|
| 105 |
+
dim: int,
|
| 106 |
+
num_attention_heads: int,
|
| 107 |
+
attention_head_dim: int,
|
| 108 |
+
context_pre_only: bool = False,
|
| 109 |
+
qk_norm: Optional[str] = None,
|
| 110 |
+
use_dual_attention: bool = False,
|
| 111 |
+
):
|
| 112 |
+
super().__init__()
|
| 113 |
+
|
| 114 |
+
self.use_dual_attention = use_dual_attention
|
| 115 |
+
self.context_pre_only = context_pre_only
|
| 116 |
+
context_norm_type = "ada_norm_continous" if context_pre_only else "ada_norm_zero"
|
| 117 |
+
|
| 118 |
+
if use_dual_attention:
|
| 119 |
+
self.norm1 = SD35AdaLayerNormZeroX(dim)
|
| 120 |
+
else:
|
| 121 |
+
self.norm1 = AdaLayerNormZero(dim)
|
| 122 |
+
|
| 123 |
+
if context_norm_type == "ada_norm_continous":
|
| 124 |
+
self.norm1_context = AdaLayerNormContinuous(
|
| 125 |
+
dim, dim, elementwise_affine=False, eps=1e-6, bias=True, norm_type="layer_norm"
|
| 126 |
+
)
|
| 127 |
+
elif context_norm_type == "ada_norm_zero":
|
| 128 |
+
self.norm1_context = AdaLayerNormZero(dim)
|
| 129 |
+
else:
|
| 130 |
+
raise ValueError(
|
| 131 |
+
f"Unknown context_norm_type: {context_norm_type}, currently only support `ada_norm_continous`, `ada_norm_zero`"
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
if hasattr(F, "scaled_dot_product_attention"):
|
| 135 |
+
processor = JointAttnProcessor2_0()
|
| 136 |
+
else:
|
| 137 |
+
raise ValueError(
|
| 138 |
+
"The current PyTorch version does not support the `scaled_dot_product_attention` function."
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
self.attn = Attention(
|
| 142 |
+
query_dim=dim,
|
| 143 |
+
cross_attention_dim=None,
|
| 144 |
+
added_kv_proj_dim=dim,
|
| 145 |
+
dim_head=attention_head_dim,
|
| 146 |
+
heads=num_attention_heads,
|
| 147 |
+
out_dim=dim,
|
| 148 |
+
context_pre_only=context_pre_only,
|
| 149 |
+
bias=True,
|
| 150 |
+
processor=processor,
|
| 151 |
+
qk_norm=qk_norm,
|
| 152 |
+
eps=1e-6,
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
if use_dual_attention:
|
| 156 |
+
self.attn2 = Attention(
|
| 157 |
+
query_dim=dim,
|
| 158 |
+
cross_attention_dim=None,
|
| 159 |
+
dim_head=attention_head_dim,
|
| 160 |
+
heads=num_attention_heads,
|
| 161 |
+
out_dim=dim,
|
| 162 |
+
bias=True,
|
| 163 |
+
processor=processor,
|
| 164 |
+
qk_norm=qk_norm,
|
| 165 |
+
eps=1e-6,
|
| 166 |
+
)
|
| 167 |
+
else:
|
| 168 |
+
self.attn2 = None
|
| 169 |
+
|
| 170 |
+
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
| 171 |
+
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
| 172 |
+
|
| 173 |
+
if not context_pre_only:
|
| 174 |
+
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
| 175 |
+
self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
| 176 |
+
else:
|
| 177 |
+
self.norm2_context = None
|
| 178 |
+
self.ff_context = None
|
| 179 |
+
|
| 180 |
+
# let chunk size default to None
|
| 181 |
+
self._chunk_size = None
|
| 182 |
+
self._chunk_dim = 0
|
| 183 |
+
|
| 184 |
+
# Copied from diffusers.models.attention.BasicTransformerBlock.set_chunk_feed_forward
|
| 185 |
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
|
| 186 |
+
# Sets chunk feed-forward
|
| 187 |
+
self._chunk_size = chunk_size
|
| 188 |
+
self._chunk_dim = dim
|
| 189 |
+
|
| 190 |
+
def forward(
|
| 191 |
+
self, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor, temb: torch.FloatTensor,
|
| 192 |
+
joint_attention_kwargs=None,
|
| 193 |
+
):
|
| 194 |
+
if self.use_dual_attention:
|
| 195 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp, norm_hidden_states2, gate_msa2 = self.norm1(
|
| 196 |
+
hidden_states, emb=temb
|
| 197 |
+
)
|
| 198 |
+
else:
|
| 199 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
|
| 200 |
+
|
| 201 |
+
if self.context_pre_only:
|
| 202 |
+
norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states, temb)
|
| 203 |
+
else:
|
| 204 |
+
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
|
| 205 |
+
encoder_hidden_states, emb=temb
|
| 206 |
+
)
|
| 207 |
+
|
| 208 |
+
# Attention.
|
| 209 |
+
attn_output, context_attn_output = self.attn(
|
| 210 |
+
hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states,
|
| 211 |
+
**({} if joint_attention_kwargs is None else joint_attention_kwargs),
|
| 212 |
+
)
|
| 213 |
+
|
| 214 |
+
# Process attention outputs for the `hidden_states`.
|
| 215 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
| 216 |
+
hidden_states = hidden_states + attn_output
|
| 217 |
+
|
| 218 |
+
if self.use_dual_attention:
|
| 219 |
+
attn_output2 = self.attn2(hidden_states=norm_hidden_states2, **({} if joint_attention_kwargs is None else joint_attention_kwargs),)
|
| 220 |
+
attn_output2 = gate_msa2.unsqueeze(1) * attn_output2
|
| 221 |
+
hidden_states = hidden_states + attn_output2
|
| 222 |
+
|
| 223 |
+
norm_hidden_states = self.norm2(hidden_states)
|
| 224 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
| 225 |
+
if self._chunk_size is not None:
|
| 226 |
+
# "feed_forward_chunk_size" can be used to save memory
|
| 227 |
+
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
|
| 228 |
+
else:
|
| 229 |
+
ff_output = self.ff(norm_hidden_states)
|
| 230 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
| 231 |
+
|
| 232 |
+
hidden_states = hidden_states + ff_output
|
| 233 |
+
|
| 234 |
+
# Process attention outputs for the `encoder_hidden_states`.
|
| 235 |
+
if self.context_pre_only:
|
| 236 |
+
encoder_hidden_states = None
|
| 237 |
+
else:
|
| 238 |
+
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
|
| 239 |
+
encoder_hidden_states = encoder_hidden_states + context_attn_output
|
| 240 |
+
|
| 241 |
+
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
|
| 242 |
+
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
|
| 243 |
+
if self._chunk_size is not None:
|
| 244 |
+
# "feed_forward_chunk_size" can be used to save memory
|
| 245 |
+
context_ff_output = _chunked_feed_forward(
|
| 246 |
+
self.ff_context, norm_encoder_hidden_states, self._chunk_dim, self._chunk_size
|
| 247 |
+
)
|
| 248 |
+
else:
|
| 249 |
+
context_ff_output = self.ff_context(norm_encoder_hidden_states)
|
| 250 |
+
encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
|
| 251 |
+
|
| 252 |
+
return encoder_hidden_states, hidden_states
|
| 253 |
+
|
| 254 |
+
|
| 255 |
+
@maybe_allow_in_graph
|
| 256 |
+
class BasicTransformerBlock(nn.Module):
|
| 257 |
+
r"""
|
| 258 |
+
A basic Transformer block.
|
| 259 |
+
|
| 260 |
+
Parameters:
|
| 261 |
+
dim (`int`): The number of channels in the input and output.
|
| 262 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
| 263 |
+
attention_head_dim (`int`): The number of channels in each head.
|
| 264 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
| 265 |
+
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
| 266 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
| 267 |
+
num_embeds_ada_norm (:
|
| 268 |
+
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
|
| 269 |
+
attention_bias (:
|
| 270 |
+
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
|
| 271 |
+
only_cross_attention (`bool`, *optional*):
|
| 272 |
+
Whether to use only cross-attention layers. In this case two cross attention layers are used.
|
| 273 |
+
double_self_attention (`bool`, *optional*):
|
| 274 |
+
Whether to use two self-attention layers. In this case no cross attention layers are used.
|
| 275 |
+
upcast_attention (`bool`, *optional*):
|
| 276 |
+
Whether to upcast the attention computation to float32. This is useful for mixed precision training.
|
| 277 |
+
norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
|
| 278 |
+
Whether to use learnable elementwise affine parameters for normalization.
|
| 279 |
+
norm_type (`str`, *optional*, defaults to `"layer_norm"`):
|
| 280 |
+
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
|
| 281 |
+
final_dropout (`bool` *optional*, defaults to False):
|
| 282 |
+
Whether to apply a final dropout after the last feed-forward layer.
|
| 283 |
+
attention_type (`str`, *optional*, defaults to `"default"`):
|
| 284 |
+
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
|
| 285 |
+
positional_embeddings (`str`, *optional*, defaults to `None`):
|
| 286 |
+
The type of positional embeddings to apply to.
|
| 287 |
+
num_positional_embeddings (`int`, *optional*, defaults to `None`):
|
| 288 |
+
The maximum number of positional embeddings to apply.
|
| 289 |
+
"""
|
| 290 |
+
|
| 291 |
+
def __init__(
|
| 292 |
+
self,
|
| 293 |
+
dim: int,
|
| 294 |
+
num_attention_heads: int,
|
| 295 |
+
attention_head_dim: int,
|
| 296 |
+
dropout=0.0,
|
| 297 |
+
cross_attention_dim: Optional[int] = None,
|
| 298 |
+
activation_fn: str = "geglu",
|
| 299 |
+
num_embeds_ada_norm: Optional[int] = None,
|
| 300 |
+
attention_bias: bool = False,
|
| 301 |
+
only_cross_attention: bool = False,
|
| 302 |
+
double_self_attention: bool = False,
|
| 303 |
+
upcast_attention: bool = False,
|
| 304 |
+
norm_elementwise_affine: bool = True,
|
| 305 |
+
norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single', 'ada_norm_continuous', 'layer_norm_i2vgen'
|
| 306 |
+
norm_eps: float = 1e-5,
|
| 307 |
+
final_dropout: bool = False,
|
| 308 |
+
attention_type: str = "default",
|
| 309 |
+
positional_embeddings: Optional[str] = None,
|
| 310 |
+
num_positional_embeddings: Optional[int] = None,
|
| 311 |
+
ada_norm_continous_conditioning_embedding_dim: Optional[int] = None,
|
| 312 |
+
ada_norm_bias: Optional[int] = None,
|
| 313 |
+
ff_inner_dim: Optional[int] = None,
|
| 314 |
+
ff_bias: bool = True,
|
| 315 |
+
attention_out_bias: bool = True,
|
| 316 |
+
):
|
| 317 |
+
super().__init__()
|
| 318 |
+
self.dim = dim
|
| 319 |
+
self.num_attention_heads = num_attention_heads
|
| 320 |
+
self.attention_head_dim = attention_head_dim
|
| 321 |
+
self.dropout = dropout
|
| 322 |
+
self.cross_attention_dim = cross_attention_dim
|
| 323 |
+
self.activation_fn = activation_fn
|
| 324 |
+
self.attention_bias = attention_bias
|
| 325 |
+
self.double_self_attention = double_self_attention
|
| 326 |
+
self.norm_elementwise_affine = norm_elementwise_affine
|
| 327 |
+
self.positional_embeddings = positional_embeddings
|
| 328 |
+
self.num_positional_embeddings = num_positional_embeddings
|
| 329 |
+
self.only_cross_attention = only_cross_attention
|
| 330 |
+
|
| 331 |
+
# We keep these boolean flags for backward-compatibility.
|
| 332 |
+
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
|
| 333 |
+
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
|
| 334 |
+
self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
|
| 335 |
+
self.use_layer_norm = norm_type == "layer_norm"
|
| 336 |
+
self.use_ada_layer_norm_continuous = norm_type == "ada_norm_continuous"
|
| 337 |
+
|
| 338 |
+
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
|
| 339 |
+
raise ValueError(
|
| 340 |
+
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
|
| 341 |
+
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
|
| 342 |
+
)
|
| 343 |
+
|
| 344 |
+
self.norm_type = norm_type
|
| 345 |
+
self.num_embeds_ada_norm = num_embeds_ada_norm
|
| 346 |
+
|
| 347 |
+
if positional_embeddings and (num_positional_embeddings is None):
|
| 348 |
+
raise ValueError(
|
| 349 |
+
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
|
| 350 |
+
)
|
| 351 |
+
|
| 352 |
+
if positional_embeddings == "sinusoidal":
|
| 353 |
+
self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings)
|
| 354 |
+
else:
|
| 355 |
+
self.pos_embed = None
|
| 356 |
+
|
| 357 |
+
# Define 3 blocks. Each block has its own normalization layer.
|
| 358 |
+
# 1. Self-Attn
|
| 359 |
+
if norm_type == "ada_norm":
|
| 360 |
+
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
| 361 |
+
elif norm_type == "ada_norm_zero":
|
| 362 |
+
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
|
| 363 |
+
elif norm_type == "ada_norm_continuous":
|
| 364 |
+
self.norm1 = AdaLayerNormContinuous(
|
| 365 |
+
dim,
|
| 366 |
+
ada_norm_continous_conditioning_embedding_dim,
|
| 367 |
+
norm_elementwise_affine,
|
| 368 |
+
norm_eps,
|
| 369 |
+
ada_norm_bias,
|
| 370 |
+
"rms_norm",
|
| 371 |
+
)
|
| 372 |
+
else:
|
| 373 |
+
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
| 374 |
+
|
| 375 |
+
self.attn1 = Attention(
|
| 376 |
+
query_dim=dim,
|
| 377 |
+
heads=num_attention_heads,
|
| 378 |
+
dim_head=attention_head_dim,
|
| 379 |
+
dropout=dropout,
|
| 380 |
+
bias=attention_bias,
|
| 381 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
| 382 |
+
upcast_attention=upcast_attention,
|
| 383 |
+
out_bias=attention_out_bias,
|
| 384 |
+
)
|
| 385 |
+
|
| 386 |
+
# 2. Cross-Attn
|
| 387 |
+
if cross_attention_dim is not None or double_self_attention:
|
| 388 |
+
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
|
| 389 |
+
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
|
| 390 |
+
# the second cross attention block.
|
| 391 |
+
if norm_type == "ada_norm":
|
| 392 |
+
self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
| 393 |
+
elif norm_type == "ada_norm_continuous":
|
| 394 |
+
self.norm2 = AdaLayerNormContinuous(
|
| 395 |
+
dim,
|
| 396 |
+
ada_norm_continous_conditioning_embedding_dim,
|
| 397 |
+
norm_elementwise_affine,
|
| 398 |
+
norm_eps,
|
| 399 |
+
ada_norm_bias,
|
| 400 |
+
"rms_norm",
|
| 401 |
+
)
|
| 402 |
+
else:
|
| 403 |
+
self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
|
| 404 |
+
|
| 405 |
+
self.attn2 = Attention(
|
| 406 |
+
query_dim=dim,
|
| 407 |
+
cross_attention_dim=cross_attention_dim if not double_self_attention else None,
|
| 408 |
+
heads=num_attention_heads,
|
| 409 |
+
dim_head=attention_head_dim,
|
| 410 |
+
dropout=dropout,
|
| 411 |
+
bias=attention_bias,
|
| 412 |
+
upcast_attention=upcast_attention,
|
| 413 |
+
out_bias=attention_out_bias,
|
| 414 |
+
) # is self-attn if encoder_hidden_states is none
|
| 415 |
+
else:
|
| 416 |
+
if norm_type == "ada_norm_single": # For Latte
|
| 417 |
+
self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
|
| 418 |
+
else:
|
| 419 |
+
self.norm2 = None
|
| 420 |
+
self.attn2 = None
|
| 421 |
+
|
| 422 |
+
# 3. Feed-forward
|
| 423 |
+
if norm_type == "ada_norm_continuous":
|
| 424 |
+
self.norm3 = AdaLayerNormContinuous(
|
| 425 |
+
dim,
|
| 426 |
+
ada_norm_continous_conditioning_embedding_dim,
|
| 427 |
+
norm_elementwise_affine,
|
| 428 |
+
norm_eps,
|
| 429 |
+
ada_norm_bias,
|
| 430 |
+
"layer_norm",
|
| 431 |
+
)
|
| 432 |
+
|
| 433 |
+
elif norm_type in ["ada_norm_zero", "ada_norm", "layer_norm"]:
|
| 434 |
+
self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
|
| 435 |
+
elif norm_type == "layer_norm_i2vgen":
|
| 436 |
+
self.norm3 = None
|
| 437 |
+
|
| 438 |
+
self.ff = FeedForward(
|
| 439 |
+
dim,
|
| 440 |
+
dropout=dropout,
|
| 441 |
+
activation_fn=activation_fn,
|
| 442 |
+
final_dropout=final_dropout,
|
| 443 |
+
inner_dim=ff_inner_dim,
|
| 444 |
+
bias=ff_bias,
|
| 445 |
+
)
|
| 446 |
+
|
| 447 |
+
# 4. Fuser
|
| 448 |
+
if attention_type == "gated" or attention_type == "gated-text-image":
|
| 449 |
+
self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim)
|
| 450 |
+
|
| 451 |
+
# 5. Scale-shift for PixArt-Alpha.
|
| 452 |
+
if norm_type == "ada_norm_single":
|
| 453 |
+
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)
|
| 454 |
+
|
| 455 |
+
# let chunk size default to None
|
| 456 |
+
self._chunk_size = None
|
| 457 |
+
self._chunk_dim = 0
|
| 458 |
+
|
| 459 |
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
|
| 460 |
+
# Sets chunk feed-forward
|
| 461 |
+
self._chunk_size = chunk_size
|
| 462 |
+
self._chunk_dim = dim
|
| 463 |
+
|
| 464 |
+
def forward(
|
| 465 |
+
self,
|
| 466 |
+
hidden_states: torch.Tensor,
|
| 467 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 468 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 469 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
| 470 |
+
timestep: Optional[torch.LongTensor] = None,
|
| 471 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
| 472 |
+
class_labels: Optional[torch.LongTensor] = None,
|
| 473 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
| 474 |
+
) -> torch.Tensor:
|
| 475 |
+
if cross_attention_kwargs is not None:
|
| 476 |
+
if cross_attention_kwargs.get("scale", None) is not None:
|
| 477 |
+
logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
|
| 478 |
+
|
| 479 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
| 480 |
+
# 0. Self-Attention
|
| 481 |
+
batch_size = hidden_states.shape[0]
|
| 482 |
+
|
| 483 |
+
if self.norm_type == "ada_norm":
|
| 484 |
+
norm_hidden_states = self.norm1(hidden_states, timestep)
|
| 485 |
+
elif self.norm_type == "ada_norm_zero":
|
| 486 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
| 487 |
+
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
|
| 488 |
+
)
|
| 489 |
+
elif self.norm_type in ["layer_norm", "layer_norm_i2vgen"]:
|
| 490 |
+
norm_hidden_states = self.norm1(hidden_states)
|
| 491 |
+
elif self.norm_type == "ada_norm_continuous":
|
| 492 |
+
norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"])
|
| 493 |
+
elif self.norm_type == "ada_norm_single":
|
| 494 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
|
| 495 |
+
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
|
| 496 |
+
).chunk(6, dim=1)
|
| 497 |
+
norm_hidden_states = self.norm1(hidden_states)
|
| 498 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
|
| 499 |
+
else:
|
| 500 |
+
raise ValueError("Incorrect norm used")
|
| 501 |
+
|
| 502 |
+
if self.pos_embed is not None:
|
| 503 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
| 504 |
+
|
| 505 |
+
# 1. Prepare GLIGEN inputs
|
| 506 |
+
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
|
| 507 |
+
gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
|
| 508 |
+
|
| 509 |
+
attn_output = self.attn1(
|
| 510 |
+
norm_hidden_states,
|
| 511 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
| 512 |
+
attention_mask=attention_mask,
|
| 513 |
+
**cross_attention_kwargs,
|
| 514 |
+
)
|
| 515 |
+
|
| 516 |
+
if self.norm_type == "ada_norm_zero":
|
| 517 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
| 518 |
+
elif self.norm_type == "ada_norm_single":
|
| 519 |
+
attn_output = gate_msa * attn_output
|
| 520 |
+
|
| 521 |
+
hidden_states = attn_output + hidden_states
|
| 522 |
+
if hidden_states.ndim == 4:
|
| 523 |
+
hidden_states = hidden_states.squeeze(1)
|
| 524 |
+
|
| 525 |
+
# 1.2 GLIGEN Control
|
| 526 |
+
if gligen_kwargs is not None:
|
| 527 |
+
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
|
| 528 |
+
|
| 529 |
+
# 3. Cross-Attention
|
| 530 |
+
if self.attn2 is not None:
|
| 531 |
+
if self.norm_type == "ada_norm":
|
| 532 |
+
norm_hidden_states = self.norm2(hidden_states, timestep)
|
| 533 |
+
elif self.norm_type in ["ada_norm_zero", "layer_norm", "layer_norm_i2vgen"]:
|
| 534 |
+
norm_hidden_states = self.norm2(hidden_states)
|
| 535 |
+
elif self.norm_type == "ada_norm_single":
|
| 536 |
+
# For PixArt norm2 isn't applied here:
|
| 537 |
+
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
|
| 538 |
+
norm_hidden_states = hidden_states
|
| 539 |
+
elif self.norm_type == "ada_norm_continuous":
|
| 540 |
+
norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"])
|
| 541 |
+
else:
|
| 542 |
+
raise ValueError("Incorrect norm")
|
| 543 |
+
|
| 544 |
+
if self.pos_embed is not None and self.norm_type != "ada_norm_single":
|
| 545 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
| 546 |
+
|
| 547 |
+
attn_output = self.attn2(
|
| 548 |
+
norm_hidden_states,
|
| 549 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 550 |
+
attention_mask=encoder_attention_mask,
|
| 551 |
+
**cross_attention_kwargs,
|
| 552 |
+
)
|
| 553 |
+
hidden_states = attn_output + hidden_states
|
| 554 |
+
|
| 555 |
+
# 4. Feed-forward
|
| 556 |
+
# i2vgen doesn't have this norm 🤷♂️
|
| 557 |
+
if self.norm_type == "ada_norm_continuous":
|
| 558 |
+
norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"])
|
| 559 |
+
elif not self.norm_type == "ada_norm_single":
|
| 560 |
+
norm_hidden_states = self.norm3(hidden_states)
|
| 561 |
+
|
| 562 |
+
if self.norm_type == "ada_norm_zero":
|
| 563 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
| 564 |
+
|
| 565 |
+
if self.norm_type == "ada_norm_single":
|
| 566 |
+
norm_hidden_states = self.norm2(hidden_states)
|
| 567 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
|
| 568 |
+
|
| 569 |
+
if self._chunk_size is not None:
|
| 570 |
+
# "feed_forward_chunk_size" can be used to save memory
|
| 571 |
+
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
|
| 572 |
+
else:
|
| 573 |
+
ff_output = self.ff(norm_hidden_states)
|
| 574 |
+
|
| 575 |
+
if self.norm_type == "ada_norm_zero":
|
| 576 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
| 577 |
+
elif self.norm_type == "ada_norm_single":
|
| 578 |
+
ff_output = gate_mlp * ff_output
|
| 579 |
+
|
| 580 |
+
hidden_states = ff_output + hidden_states
|
| 581 |
+
if hidden_states.ndim == 4:
|
| 582 |
+
hidden_states = hidden_states.squeeze(1)
|
| 583 |
+
|
| 584 |
+
return hidden_states
|
| 585 |
+
|
| 586 |
+
|
| 587 |
+
class LuminaFeedForward(nn.Module):
|
| 588 |
+
r"""
|
| 589 |
+
A feed-forward layer.
|
| 590 |
+
|
| 591 |
+
Parameters:
|
| 592 |
+
hidden_size (`int`):
|
| 593 |
+
The dimensionality of the hidden layers in the model. This parameter determines the width of the model's
|
| 594 |
+
hidden representations.
|
| 595 |
+
intermediate_size (`int`): The intermediate dimension of the feedforward layer.
|
| 596 |
+
multiple_of (`int`, *optional*): Value to ensure hidden dimension is a multiple
|
| 597 |
+
of this value.
|
| 598 |
+
ffn_dim_multiplier (float, *optional*): Custom multiplier for hidden
|
| 599 |
+
dimension. Defaults to None.
|
| 600 |
+
"""
|
| 601 |
+
|
| 602 |
+
def __init__(
|
| 603 |
+
self,
|
| 604 |
+
dim: int,
|
| 605 |
+
inner_dim: int,
|
| 606 |
+
multiple_of: Optional[int] = 256,
|
| 607 |
+
ffn_dim_multiplier: Optional[float] = None,
|
| 608 |
+
):
|
| 609 |
+
super().__init__()
|
| 610 |
+
inner_dim = int(2 * inner_dim / 3)
|
| 611 |
+
# custom hidden_size factor multiplier
|
| 612 |
+
if ffn_dim_multiplier is not None:
|
| 613 |
+
inner_dim = int(ffn_dim_multiplier * inner_dim)
|
| 614 |
+
inner_dim = multiple_of * ((inner_dim + multiple_of - 1) // multiple_of)
|
| 615 |
+
|
| 616 |
+
self.linear_1 = nn.Linear(
|
| 617 |
+
dim,
|
| 618 |
+
inner_dim,
|
| 619 |
+
bias=False,
|
| 620 |
+
)
|
| 621 |
+
self.linear_2 = nn.Linear(
|
| 622 |
+
inner_dim,
|
| 623 |
+
dim,
|
| 624 |
+
bias=False,
|
| 625 |
+
)
|
| 626 |
+
self.linear_3 = nn.Linear(
|
| 627 |
+
dim,
|
| 628 |
+
inner_dim,
|
| 629 |
+
bias=False,
|
| 630 |
+
)
|
| 631 |
+
self.silu = FP32SiLU()
|
| 632 |
+
|
| 633 |
+
def forward(self, x):
|
| 634 |
+
return self.linear_2(self.silu(self.linear_1(x)) * self.linear_3(x))
|
| 635 |
+
|
| 636 |
+
|
| 637 |
+
@maybe_allow_in_graph
|
| 638 |
+
class TemporalBasicTransformerBlock(nn.Module):
|
| 639 |
+
r"""
|
| 640 |
+
A basic Transformer block for video like data.
|
| 641 |
+
|
| 642 |
+
Parameters:
|
| 643 |
+
dim (`int`): The number of channels in the input and output.
|
| 644 |
+
time_mix_inner_dim (`int`): The number of channels for temporal attention.
|
| 645 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
| 646 |
+
attention_head_dim (`int`): The number of channels in each head.
|
| 647 |
+
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
| 648 |
+
"""
|
| 649 |
+
|
| 650 |
+
def __init__(
|
| 651 |
+
self,
|
| 652 |
+
dim: int,
|
| 653 |
+
time_mix_inner_dim: int,
|
| 654 |
+
num_attention_heads: int,
|
| 655 |
+
attention_head_dim: int,
|
| 656 |
+
cross_attention_dim: Optional[int] = None,
|
| 657 |
+
):
|
| 658 |
+
super().__init__()
|
| 659 |
+
self.is_res = dim == time_mix_inner_dim
|
| 660 |
+
|
| 661 |
+
self.norm_in = nn.LayerNorm(dim)
|
| 662 |
+
|
| 663 |
+
# Define 3 blocks. Each block has its own normalization layer.
|
| 664 |
+
# 1. Self-Attn
|
| 665 |
+
self.ff_in = FeedForward(
|
| 666 |
+
dim,
|
| 667 |
+
dim_out=time_mix_inner_dim,
|
| 668 |
+
activation_fn="geglu",
|
| 669 |
+
)
|
| 670 |
+
|
| 671 |
+
self.norm1 = nn.LayerNorm(time_mix_inner_dim)
|
| 672 |
+
self.attn1 = Attention(
|
| 673 |
+
query_dim=time_mix_inner_dim,
|
| 674 |
+
heads=num_attention_heads,
|
| 675 |
+
dim_head=attention_head_dim,
|
| 676 |
+
cross_attention_dim=None,
|
| 677 |
+
)
|
| 678 |
+
|
| 679 |
+
# 2. Cross-Attn
|
| 680 |
+
if cross_attention_dim is not None:
|
| 681 |
+
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
|
| 682 |
+
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
|
| 683 |
+
# the second cross attention block.
|
| 684 |
+
self.norm2 = nn.LayerNorm(time_mix_inner_dim)
|
| 685 |
+
self.attn2 = Attention(
|
| 686 |
+
query_dim=time_mix_inner_dim,
|
| 687 |
+
cross_attention_dim=cross_attention_dim,
|
| 688 |
+
heads=num_attention_heads,
|
| 689 |
+
dim_head=attention_head_dim,
|
| 690 |
+
) # is self-attn if encoder_hidden_states is none
|
| 691 |
+
else:
|
| 692 |
+
self.norm2 = None
|
| 693 |
+
self.attn2 = None
|
| 694 |
+
|
| 695 |
+
# 3. Feed-forward
|
| 696 |
+
self.norm3 = nn.LayerNorm(time_mix_inner_dim)
|
| 697 |
+
self.ff = FeedForward(time_mix_inner_dim, activation_fn="geglu")
|
| 698 |
+
|
| 699 |
+
# let chunk size default to None
|
| 700 |
+
self._chunk_size = None
|
| 701 |
+
self._chunk_dim = None
|
| 702 |
+
|
| 703 |
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], **kwargs):
|
| 704 |
+
# Sets chunk feed-forward
|
| 705 |
+
self._chunk_size = chunk_size
|
| 706 |
+
# chunk dim should be hardcoded to 1 to have better speed vs. memory trade-off
|
| 707 |
+
self._chunk_dim = 1
|
| 708 |
+
|
| 709 |
+
def forward(
|
| 710 |
+
self,
|
| 711 |
+
hidden_states: torch.Tensor,
|
| 712 |
+
num_frames: int,
|
| 713 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 714 |
+
) -> torch.Tensor:
|
| 715 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
| 716 |
+
# 0. Self-Attention
|
| 717 |
+
batch_size = hidden_states.shape[0]
|
| 718 |
+
|
| 719 |
+
batch_frames, seq_length, channels = hidden_states.shape
|
| 720 |
+
batch_size = batch_frames // num_frames
|
| 721 |
+
|
| 722 |
+
hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, seq_length, channels)
|
| 723 |
+
hidden_states = hidden_states.permute(0, 2, 1, 3)
|
| 724 |
+
hidden_states = hidden_states.reshape(batch_size * seq_length, num_frames, channels)
|
| 725 |
+
|
| 726 |
+
residual = hidden_states
|
| 727 |
+
hidden_states = self.norm_in(hidden_states)
|
| 728 |
+
|
| 729 |
+
if self._chunk_size is not None:
|
| 730 |
+
hidden_states = _chunked_feed_forward(self.ff_in, hidden_states, self._chunk_dim, self._chunk_size)
|
| 731 |
+
else:
|
| 732 |
+
hidden_states = self.ff_in(hidden_states)
|
| 733 |
+
|
| 734 |
+
if self.is_res:
|
| 735 |
+
hidden_states = hidden_states + residual
|
| 736 |
+
|
| 737 |
+
norm_hidden_states = self.norm1(hidden_states)
|
| 738 |
+
attn_output = self.attn1(norm_hidden_states, encoder_hidden_states=None)
|
| 739 |
+
hidden_states = attn_output + hidden_states
|
| 740 |
+
|
| 741 |
+
# 3. Cross-Attention
|
| 742 |
+
if self.attn2 is not None:
|
| 743 |
+
norm_hidden_states = self.norm2(hidden_states)
|
| 744 |
+
attn_output = self.attn2(norm_hidden_states, encoder_hidden_states=encoder_hidden_states)
|
| 745 |
+
hidden_states = attn_output + hidden_states
|
| 746 |
+
|
| 747 |
+
# 4. Feed-forward
|
| 748 |
+
norm_hidden_states = self.norm3(hidden_states)
|
| 749 |
+
|
| 750 |
+
if self._chunk_size is not None:
|
| 751 |
+
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
|
| 752 |
+
else:
|
| 753 |
+
ff_output = self.ff(norm_hidden_states)
|
| 754 |
+
|
| 755 |
+
if self.is_res:
|
| 756 |
+
hidden_states = ff_output + hidden_states
|
| 757 |
+
else:
|
| 758 |
+
hidden_states = ff_output
|
| 759 |
+
|
| 760 |
+
hidden_states = hidden_states[None, :].reshape(batch_size, seq_length, num_frames, channels)
|
| 761 |
+
hidden_states = hidden_states.permute(0, 2, 1, 3)
|
| 762 |
+
hidden_states = hidden_states.reshape(batch_size * num_frames, seq_length, channels)
|
| 763 |
+
|
| 764 |
+
return hidden_states
|
| 765 |
+
|
| 766 |
+
|
| 767 |
+
class SkipFFTransformerBlock(nn.Module):
|
| 768 |
+
def __init__(
|
| 769 |
+
self,
|
| 770 |
+
dim: int,
|
| 771 |
+
num_attention_heads: int,
|
| 772 |
+
attention_head_dim: int,
|
| 773 |
+
kv_input_dim: int,
|
| 774 |
+
kv_input_dim_proj_use_bias: bool,
|
| 775 |
+
dropout=0.0,
|
| 776 |
+
cross_attention_dim: Optional[int] = None,
|
| 777 |
+
attention_bias: bool = False,
|
| 778 |
+
attention_out_bias: bool = True,
|
| 779 |
+
):
|
| 780 |
+
super().__init__()
|
| 781 |
+
if kv_input_dim != dim:
|
| 782 |
+
self.kv_mapper = nn.Linear(kv_input_dim, dim, kv_input_dim_proj_use_bias)
|
| 783 |
+
else:
|
| 784 |
+
self.kv_mapper = None
|
| 785 |
+
|
| 786 |
+
self.norm1 = RMSNorm(dim, 1e-06)
|
| 787 |
+
|
| 788 |
+
self.attn1 = Attention(
|
| 789 |
+
query_dim=dim,
|
| 790 |
+
heads=num_attention_heads,
|
| 791 |
+
dim_head=attention_head_dim,
|
| 792 |
+
dropout=dropout,
|
| 793 |
+
bias=attention_bias,
|
| 794 |
+
cross_attention_dim=cross_attention_dim,
|
| 795 |
+
out_bias=attention_out_bias,
|
| 796 |
+
)
|
| 797 |
+
|
| 798 |
+
self.norm2 = RMSNorm(dim, 1e-06)
|
| 799 |
+
|
| 800 |
+
self.attn2 = Attention(
|
| 801 |
+
query_dim=dim,
|
| 802 |
+
cross_attention_dim=cross_attention_dim,
|
| 803 |
+
heads=num_attention_heads,
|
| 804 |
+
dim_head=attention_head_dim,
|
| 805 |
+
dropout=dropout,
|
| 806 |
+
bias=attention_bias,
|
| 807 |
+
out_bias=attention_out_bias,
|
| 808 |
+
)
|
| 809 |
+
|
| 810 |
+
def forward(self, hidden_states, encoder_hidden_states, cross_attention_kwargs):
|
| 811 |
+
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
|
| 812 |
+
|
| 813 |
+
if self.kv_mapper is not None:
|
| 814 |
+
encoder_hidden_states = self.kv_mapper(F.silu(encoder_hidden_states))
|
| 815 |
+
|
| 816 |
+
norm_hidden_states = self.norm1(hidden_states)
|
| 817 |
+
|
| 818 |
+
attn_output = self.attn1(
|
| 819 |
+
norm_hidden_states,
|
| 820 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 821 |
+
**cross_attention_kwargs,
|
| 822 |
+
)
|
| 823 |
+
|
| 824 |
+
hidden_states = attn_output + hidden_states
|
| 825 |
+
|
| 826 |
+
norm_hidden_states = self.norm2(hidden_states)
|
| 827 |
+
|
| 828 |
+
attn_output = self.attn2(
|
| 829 |
+
norm_hidden_states,
|
| 830 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 831 |
+
**cross_attention_kwargs,
|
| 832 |
+
)
|
| 833 |
+
|
| 834 |
+
hidden_states = attn_output + hidden_states
|
| 835 |
+
|
| 836 |
+
return hidden_states
|
| 837 |
+
|
| 838 |
+
|
| 839 |
+
@maybe_allow_in_graph
|
| 840 |
+
class FreeNoiseTransformerBlock(nn.Module):
|
| 841 |
+
r"""
|
| 842 |
+
A FreeNoise Transformer block.
|
| 843 |
+
|
| 844 |
+
Parameters:
|
| 845 |
+
dim (`int`):
|
| 846 |
+
The number of channels in the input and output.
|
| 847 |
+
num_attention_heads (`int`):
|
| 848 |
+
The number of heads to use for multi-head attention.
|
| 849 |
+
attention_head_dim (`int`):
|
| 850 |
+
The number of channels in each head.
|
| 851 |
+
dropout (`float`, *optional*, defaults to 0.0):
|
| 852 |
+
The dropout probability to use.
|
| 853 |
+
cross_attention_dim (`int`, *optional*):
|
| 854 |
+
The size of the encoder_hidden_states vector for cross attention.
|
| 855 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`):
|
| 856 |
+
Activation function to be used in feed-forward.
|
| 857 |
+
num_embeds_ada_norm (`int`, *optional*):
|
| 858 |
+
The number of diffusion steps used during training. See `Transformer2DModel`.
|
| 859 |
+
attention_bias (`bool`, defaults to `False`):
|
| 860 |
+
Configure if the attentions should contain a bias parameter.
|
| 861 |
+
only_cross_attention (`bool`, defaults to `False`):
|
| 862 |
+
Whether to use only cross-attention layers. In this case two cross attention layers are used.
|
| 863 |
+
double_self_attention (`bool`, defaults to `False`):
|
| 864 |
+
Whether to use two self-attention layers. In this case no cross attention layers are used.
|
| 865 |
+
upcast_attention (`bool`, defaults to `False`):
|
| 866 |
+
Whether to upcast the attention computation to float32. This is useful for mixed precision training.
|
| 867 |
+
norm_elementwise_affine (`bool`, defaults to `True`):
|
| 868 |
+
Whether to use learnable elementwise affine parameters for normalization.
|
| 869 |
+
norm_type (`str`, defaults to `"layer_norm"`):
|
| 870 |
+
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
|
| 871 |
+
final_dropout (`bool` defaults to `False`):
|
| 872 |
+
Whether to apply a final dropout after the last feed-forward layer.
|
| 873 |
+
attention_type (`str`, defaults to `"default"`):
|
| 874 |
+
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
|
| 875 |
+
positional_embeddings (`str`, *optional*):
|
| 876 |
+
The type of positional embeddings to apply to.
|
| 877 |
+
num_positional_embeddings (`int`, *optional*, defaults to `None`):
|
| 878 |
+
The maximum number of positional embeddings to apply.
|
| 879 |
+
ff_inner_dim (`int`, *optional*):
|
| 880 |
+
Hidden dimension of feed-forward MLP.
|
| 881 |
+
ff_bias (`bool`, defaults to `True`):
|
| 882 |
+
Whether or not to use bias in feed-forward MLP.
|
| 883 |
+
attention_out_bias (`bool`, defaults to `True`):
|
| 884 |
+
Whether or not to use bias in attention output project layer.
|
| 885 |
+
context_length (`int`, defaults to `16`):
|
| 886 |
+
The maximum number of frames that the FreeNoise block processes at once.
|
| 887 |
+
context_stride (`int`, defaults to `4`):
|
| 888 |
+
The number of frames to be skipped before starting to process a new batch of `context_length` frames.
|
| 889 |
+
weighting_scheme (`str`, defaults to `"pyramid"`):
|
| 890 |
+
The weighting scheme to use for weighting averaging of processed latent frames. As described in the
|
| 891 |
+
Equation 9. of the [FreeNoise](https://arxiv.org/abs/2310.15169) paper, "pyramid" is the default setting
|
| 892 |
+
used.
|
| 893 |
+
"""
|
| 894 |
+
|
| 895 |
+
def __init__(
|
| 896 |
+
self,
|
| 897 |
+
dim: int,
|
| 898 |
+
num_attention_heads: int,
|
| 899 |
+
attention_head_dim: int,
|
| 900 |
+
dropout: float = 0.0,
|
| 901 |
+
cross_attention_dim: Optional[int] = None,
|
| 902 |
+
activation_fn: str = "geglu",
|
| 903 |
+
num_embeds_ada_norm: Optional[int] = None,
|
| 904 |
+
attention_bias: bool = False,
|
| 905 |
+
only_cross_attention: bool = False,
|
| 906 |
+
double_self_attention: bool = False,
|
| 907 |
+
upcast_attention: bool = False,
|
| 908 |
+
norm_elementwise_affine: bool = True,
|
| 909 |
+
norm_type: str = "layer_norm",
|
| 910 |
+
norm_eps: float = 1e-5,
|
| 911 |
+
final_dropout: bool = False,
|
| 912 |
+
positional_embeddings: Optional[str] = None,
|
| 913 |
+
num_positional_embeddings: Optional[int] = None,
|
| 914 |
+
ff_inner_dim: Optional[int] = None,
|
| 915 |
+
ff_bias: bool = True,
|
| 916 |
+
attention_out_bias: bool = True,
|
| 917 |
+
context_length: int = 16,
|
| 918 |
+
context_stride: int = 4,
|
| 919 |
+
weighting_scheme: str = "pyramid",
|
| 920 |
+
):
|
| 921 |
+
super().__init__()
|
| 922 |
+
self.dim = dim
|
| 923 |
+
self.num_attention_heads = num_attention_heads
|
| 924 |
+
self.attention_head_dim = attention_head_dim
|
| 925 |
+
self.dropout = dropout
|
| 926 |
+
self.cross_attention_dim = cross_attention_dim
|
| 927 |
+
self.activation_fn = activation_fn
|
| 928 |
+
self.attention_bias = attention_bias
|
| 929 |
+
self.double_self_attention = double_self_attention
|
| 930 |
+
self.norm_elementwise_affine = norm_elementwise_affine
|
| 931 |
+
self.positional_embeddings = positional_embeddings
|
| 932 |
+
self.num_positional_embeddings = num_positional_embeddings
|
| 933 |
+
self.only_cross_attention = only_cross_attention
|
| 934 |
+
|
| 935 |
+
self.set_free_noise_properties(context_length, context_stride, weighting_scheme)
|
| 936 |
+
|
| 937 |
+
# We keep these boolean flags for backward-compatibility.
|
| 938 |
+
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
|
| 939 |
+
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
|
| 940 |
+
self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
|
| 941 |
+
self.use_layer_norm = norm_type == "layer_norm"
|
| 942 |
+
self.use_ada_layer_norm_continuous = norm_type == "ada_norm_continuous"
|
| 943 |
+
|
| 944 |
+
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
|
| 945 |
+
raise ValueError(
|
| 946 |
+
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
|
| 947 |
+
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
|
| 948 |
+
)
|
| 949 |
+
|
| 950 |
+
self.norm_type = norm_type
|
| 951 |
+
self.num_embeds_ada_norm = num_embeds_ada_norm
|
| 952 |
+
|
| 953 |
+
if positional_embeddings and (num_positional_embeddings is None):
|
| 954 |
+
raise ValueError(
|
| 955 |
+
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
|
| 956 |
+
)
|
| 957 |
+
|
| 958 |
+
if positional_embeddings == "sinusoidal":
|
| 959 |
+
self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings)
|
| 960 |
+
else:
|
| 961 |
+
self.pos_embed = None
|
| 962 |
+
|
| 963 |
+
# Define 3 blocks. Each block has its own normalization layer.
|
| 964 |
+
# 1. Self-Attn
|
| 965 |
+
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
| 966 |
+
|
| 967 |
+
self.attn1 = Attention(
|
| 968 |
+
query_dim=dim,
|
| 969 |
+
heads=num_attention_heads,
|
| 970 |
+
dim_head=attention_head_dim,
|
| 971 |
+
dropout=dropout,
|
| 972 |
+
bias=attention_bias,
|
| 973 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
| 974 |
+
upcast_attention=upcast_attention,
|
| 975 |
+
out_bias=attention_out_bias,
|
| 976 |
+
)
|
| 977 |
+
|
| 978 |
+
# 2. Cross-Attn
|
| 979 |
+
if cross_attention_dim is not None or double_self_attention:
|
| 980 |
+
self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
|
| 981 |
+
|
| 982 |
+
self.attn2 = Attention(
|
| 983 |
+
query_dim=dim,
|
| 984 |
+
cross_attention_dim=cross_attention_dim if not double_self_attention else None,
|
| 985 |
+
heads=num_attention_heads,
|
| 986 |
+
dim_head=attention_head_dim,
|
| 987 |
+
dropout=dropout,
|
| 988 |
+
bias=attention_bias,
|
| 989 |
+
upcast_attention=upcast_attention,
|
| 990 |
+
out_bias=attention_out_bias,
|
| 991 |
+
) # is self-attn if encoder_hidden_states is none
|
| 992 |
+
|
| 993 |
+
# 3. Feed-forward
|
| 994 |
+
self.ff = FeedForward(
|
| 995 |
+
dim,
|
| 996 |
+
dropout=dropout,
|
| 997 |
+
activation_fn=activation_fn,
|
| 998 |
+
final_dropout=final_dropout,
|
| 999 |
+
inner_dim=ff_inner_dim,
|
| 1000 |
+
bias=ff_bias,
|
| 1001 |
+
)
|
| 1002 |
+
|
| 1003 |
+
self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
|
| 1004 |
+
|
| 1005 |
+
# let chunk size default to None
|
| 1006 |
+
self._chunk_size = None
|
| 1007 |
+
self._chunk_dim = 0
|
| 1008 |
+
|
| 1009 |
+
def _get_frame_indices(self, num_frames: int) -> List[Tuple[int, int]]:
|
| 1010 |
+
frame_indices = []
|
| 1011 |
+
for i in range(0, num_frames - self.context_length + 1, self.context_stride):
|
| 1012 |
+
window_start = i
|
| 1013 |
+
window_end = min(num_frames, i + self.context_length)
|
| 1014 |
+
frame_indices.append((window_start, window_end))
|
| 1015 |
+
return frame_indices
|
| 1016 |
+
|
| 1017 |
+
def _get_frame_weights(self, num_frames: int, weighting_scheme: str = "pyramid") -> List[float]:
|
| 1018 |
+
if weighting_scheme == "flat":
|
| 1019 |
+
weights = [1.0] * num_frames
|
| 1020 |
+
|
| 1021 |
+
elif weighting_scheme == "pyramid":
|
| 1022 |
+
if num_frames % 2 == 0:
|
| 1023 |
+
# num_frames = 4 => [1, 2, 2, 1]
|
| 1024 |
+
mid = num_frames // 2
|
| 1025 |
+
weights = list(range(1, mid + 1))
|
| 1026 |
+
weights = weights + weights[::-1]
|
| 1027 |
+
else:
|
| 1028 |
+
# num_frames = 5 => [1, 2, 3, 2, 1]
|
| 1029 |
+
mid = (num_frames + 1) // 2
|
| 1030 |
+
weights = list(range(1, mid))
|
| 1031 |
+
weights = weights + [mid] + weights[::-1]
|
| 1032 |
+
|
| 1033 |
+
elif weighting_scheme == "delayed_reverse_sawtooth":
|
| 1034 |
+
if num_frames % 2 == 0:
|
| 1035 |
+
# num_frames = 4 => [0.01, 2, 2, 1]
|
| 1036 |
+
mid = num_frames // 2
|
| 1037 |
+
weights = [0.01] * (mid - 1) + [mid]
|
| 1038 |
+
weights = weights + list(range(mid, 0, -1))
|
| 1039 |
+
else:
|
| 1040 |
+
# num_frames = 5 => [0.01, 0.01, 3, 2, 1]
|
| 1041 |
+
mid = (num_frames + 1) // 2
|
| 1042 |
+
weights = [0.01] * mid
|
| 1043 |
+
weights = weights + list(range(mid, 0, -1))
|
| 1044 |
+
else:
|
| 1045 |
+
raise ValueError(f"Unsupported value for weighting_scheme={weighting_scheme}")
|
| 1046 |
+
|
| 1047 |
+
return weights
|
| 1048 |
+
|
| 1049 |
+
def set_free_noise_properties(
|
| 1050 |
+
self, context_length: int, context_stride: int, weighting_scheme: str = "pyramid"
|
| 1051 |
+
) -> None:
|
| 1052 |
+
self.context_length = context_length
|
| 1053 |
+
self.context_stride = context_stride
|
| 1054 |
+
self.weighting_scheme = weighting_scheme
|
| 1055 |
+
|
| 1056 |
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0) -> None:
|
| 1057 |
+
# Sets chunk feed-forward
|
| 1058 |
+
self._chunk_size = chunk_size
|
| 1059 |
+
self._chunk_dim = dim
|
| 1060 |
+
|
| 1061 |
+
def forward(
|
| 1062 |
+
self,
|
| 1063 |
+
hidden_states: torch.Tensor,
|
| 1064 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1065 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 1066 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
| 1067 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
| 1068 |
+
*args,
|
| 1069 |
+
**kwargs,
|
| 1070 |
+
) -> torch.Tensor:
|
| 1071 |
+
if cross_attention_kwargs is not None:
|
| 1072 |
+
if cross_attention_kwargs.get("scale", None) is not None:
|
| 1073 |
+
logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
|
| 1074 |
+
|
| 1075 |
+
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
|
| 1076 |
+
|
| 1077 |
+
# hidden_states: [B x H x W, F, C]
|
| 1078 |
+
device = hidden_states.device
|
| 1079 |
+
dtype = hidden_states.dtype
|
| 1080 |
+
|
| 1081 |
+
num_frames = hidden_states.size(1)
|
| 1082 |
+
frame_indices = self._get_frame_indices(num_frames)
|
| 1083 |
+
frame_weights = self._get_frame_weights(self.context_length, self.weighting_scheme)
|
| 1084 |
+
frame_weights = torch.tensor(frame_weights, device=device, dtype=dtype).unsqueeze(0).unsqueeze(-1)
|
| 1085 |
+
is_last_frame_batch_complete = frame_indices[-1][1] == num_frames
|
| 1086 |
+
|
| 1087 |
+
# Handle out-of-bounds case if num_frames isn't perfectly divisible by context_length
|
| 1088 |
+
# For example, num_frames=25, context_length=16, context_stride=4, then we expect the ranges:
|
| 1089 |
+
# [(0, 16), (4, 20), (8, 24), (10, 26)]
|
| 1090 |
+
if not is_last_frame_batch_complete:
|
| 1091 |
+
if num_frames < self.context_length:
|
| 1092 |
+
raise ValueError(f"Expected {num_frames=} to be greater or equal than {self.context_length=}")
|
| 1093 |
+
last_frame_batch_length = num_frames - frame_indices[-1][1]
|
| 1094 |
+
frame_indices.append((num_frames - self.context_length, num_frames))
|
| 1095 |
+
|
| 1096 |
+
num_times_accumulated = torch.zeros((1, num_frames, 1), device=device)
|
| 1097 |
+
accumulated_values = torch.zeros_like(hidden_states)
|
| 1098 |
+
|
| 1099 |
+
for i, (frame_start, frame_end) in enumerate(frame_indices):
|
| 1100 |
+
# The reason for slicing here is to ensure that if (frame_end - frame_start) is to handle
|
| 1101 |
+
# cases like frame_indices=[(0, 16), (16, 20)], if the user provided a video with 19 frames, or
|
| 1102 |
+
# essentially a non-multiple of `context_length`.
|
| 1103 |
+
weights = torch.ones_like(num_times_accumulated[:, frame_start:frame_end])
|
| 1104 |
+
weights *= frame_weights
|
| 1105 |
+
|
| 1106 |
+
hidden_states_chunk = hidden_states[:, frame_start:frame_end]
|
| 1107 |
+
|
| 1108 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
| 1109 |
+
# 1. Self-Attention
|
| 1110 |
+
norm_hidden_states = self.norm1(hidden_states_chunk)
|
| 1111 |
+
|
| 1112 |
+
if self.pos_embed is not None:
|
| 1113 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
| 1114 |
+
|
| 1115 |
+
attn_output = self.attn1(
|
| 1116 |
+
norm_hidden_states,
|
| 1117 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
| 1118 |
+
attention_mask=attention_mask,
|
| 1119 |
+
**cross_attention_kwargs,
|
| 1120 |
+
)
|
| 1121 |
+
|
| 1122 |
+
hidden_states_chunk = attn_output + hidden_states_chunk
|
| 1123 |
+
if hidden_states_chunk.ndim == 4:
|
| 1124 |
+
hidden_states_chunk = hidden_states_chunk.squeeze(1)
|
| 1125 |
+
|
| 1126 |
+
# 2. Cross-Attention
|
| 1127 |
+
if self.attn2 is not None:
|
| 1128 |
+
norm_hidden_states = self.norm2(hidden_states_chunk)
|
| 1129 |
+
|
| 1130 |
+
if self.pos_embed is not None and self.norm_type != "ada_norm_single":
|
| 1131 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
| 1132 |
+
|
| 1133 |
+
attn_output = self.attn2(
|
| 1134 |
+
norm_hidden_states,
|
| 1135 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 1136 |
+
attention_mask=encoder_attention_mask,
|
| 1137 |
+
**cross_attention_kwargs,
|
| 1138 |
+
)
|
| 1139 |
+
hidden_states_chunk = attn_output + hidden_states_chunk
|
| 1140 |
+
|
| 1141 |
+
if i == len(frame_indices) - 1 and not is_last_frame_batch_complete:
|
| 1142 |
+
accumulated_values[:, -last_frame_batch_length:] += (
|
| 1143 |
+
hidden_states_chunk[:, -last_frame_batch_length:] * weights[:, -last_frame_batch_length:]
|
| 1144 |
+
)
|
| 1145 |
+
num_times_accumulated[:, -last_frame_batch_length:] += weights[:, -last_frame_batch_length]
|
| 1146 |
+
else:
|
| 1147 |
+
accumulated_values[:, frame_start:frame_end] += hidden_states_chunk * weights
|
| 1148 |
+
num_times_accumulated[:, frame_start:frame_end] += weights
|
| 1149 |
+
|
| 1150 |
+
# TODO(aryan): Maybe this could be done in a better way.
|
| 1151 |
+
#
|
| 1152 |
+
# Previously, this was:
|
| 1153 |
+
# hidden_states = torch.where(
|
| 1154 |
+
# num_times_accumulated > 0, accumulated_values / num_times_accumulated, accumulated_values
|
| 1155 |
+
# )
|
| 1156 |
+
#
|
| 1157 |
+
# The reasoning for the change here is `torch.where` became a bottleneck at some point when golfing memory
|
| 1158 |
+
# spikes. It is particularly noticeable when the number of frames is high. My understanding is that this comes
|
| 1159 |
+
# from tensors being copied - which is why we resort to spliting and concatenating here. I've not particularly
|
| 1160 |
+
# looked into this deeply because other memory optimizations led to more pronounced reductions.
|
| 1161 |
+
hidden_states = torch.cat(
|
| 1162 |
+
[
|
| 1163 |
+
torch.where(num_times_split > 0, accumulated_split / num_times_split, accumulated_split)
|
| 1164 |
+
for accumulated_split, num_times_split in zip(
|
| 1165 |
+
accumulated_values.split(self.context_length, dim=1),
|
| 1166 |
+
num_times_accumulated.split(self.context_length, dim=1),
|
| 1167 |
+
)
|
| 1168 |
+
],
|
| 1169 |
+
dim=1,
|
| 1170 |
+
).to(dtype)
|
| 1171 |
+
|
| 1172 |
+
# 3. Feed-forward
|
| 1173 |
+
norm_hidden_states = self.norm3(hidden_states)
|
| 1174 |
+
|
| 1175 |
+
if self._chunk_size is not None:
|
| 1176 |
+
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
|
| 1177 |
+
else:
|
| 1178 |
+
ff_output = self.ff(norm_hidden_states)
|
| 1179 |
+
|
| 1180 |
+
hidden_states = ff_output + hidden_states
|
| 1181 |
+
if hidden_states.ndim == 4:
|
| 1182 |
+
hidden_states = hidden_states.squeeze(1)
|
| 1183 |
+
|
| 1184 |
+
return hidden_states
|
| 1185 |
+
|
| 1186 |
+
|
| 1187 |
+
class FeedForward(nn.Module):
|
| 1188 |
+
r"""
|
| 1189 |
+
A feed-forward layer.
|
| 1190 |
+
|
| 1191 |
+
Parameters:
|
| 1192 |
+
dim (`int`): The number of channels in the input.
|
| 1193 |
+
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
|
| 1194 |
+
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
|
| 1195 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
| 1196 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
| 1197 |
+
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
|
| 1198 |
+
bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
|
| 1199 |
+
"""
|
| 1200 |
+
|
| 1201 |
+
def __init__(
|
| 1202 |
+
self,
|
| 1203 |
+
dim: int,
|
| 1204 |
+
dim_out: Optional[int] = None,
|
| 1205 |
+
mult: int = 4,
|
| 1206 |
+
dropout: float = 0.0,
|
| 1207 |
+
activation_fn: str = "geglu",
|
| 1208 |
+
final_dropout: bool = False,
|
| 1209 |
+
inner_dim=None,
|
| 1210 |
+
bias: bool = True,
|
| 1211 |
+
):
|
| 1212 |
+
super().__init__()
|
| 1213 |
+
if inner_dim is None:
|
| 1214 |
+
inner_dim = int(dim * mult)
|
| 1215 |
+
dim_out = dim_out if dim_out is not None else dim
|
| 1216 |
+
|
| 1217 |
+
if activation_fn == "gelu":
|
| 1218 |
+
act_fn = GELU(dim, inner_dim, bias=bias)
|
| 1219 |
+
if activation_fn == "gelu-approximate":
|
| 1220 |
+
act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias)
|
| 1221 |
+
elif activation_fn == "geglu":
|
| 1222 |
+
act_fn = GEGLU(dim, inner_dim, bias=bias)
|
| 1223 |
+
elif activation_fn == "geglu-approximate":
|
| 1224 |
+
act_fn = ApproximateGELU(dim, inner_dim, bias=bias)
|
| 1225 |
+
elif activation_fn == "swiglu":
|
| 1226 |
+
act_fn = SwiGLU(dim, inner_dim, bias=bias)
|
| 1227 |
+
|
| 1228 |
+
self.net = nn.ModuleList([])
|
| 1229 |
+
# project in
|
| 1230 |
+
self.net.append(act_fn)
|
| 1231 |
+
# project dropout
|
| 1232 |
+
self.net.append(nn.Dropout(dropout))
|
| 1233 |
+
# project out
|
| 1234 |
+
self.net.append(nn.Linear(inner_dim, dim_out, bias=bias))
|
| 1235 |
+
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
|
| 1236 |
+
if final_dropout:
|
| 1237 |
+
self.net.append(nn.Dropout(dropout))
|
| 1238 |
+
|
| 1239 |
+
def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor:
|
| 1240 |
+
if len(args) > 0 or kwargs.get("scale", None) is not None:
|
| 1241 |
+
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
|
| 1242 |
+
deprecate("scale", "1.0.0", deprecation_message)
|
| 1243 |
+
for module in self.net:
|
| 1244 |
+
hidden_states = module(hidden_states)
|
| 1245 |
+
return hidden_states
|
models/resampler.py
ADDED
|
@@ -0,0 +1,304 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# modified from https://github.com/mlfoundations/open_flamingo/blob/main/open_flamingo/src/helpers.py
|
| 2 |
+
import math
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
|
| 7 |
+
from diffusers.models.embeddings import Timesteps, TimestepEmbedding
|
| 8 |
+
|
| 9 |
+
def get_timestep_embedding(
|
| 10 |
+
timesteps: torch.Tensor,
|
| 11 |
+
embedding_dim: int,
|
| 12 |
+
flip_sin_to_cos: bool = False,
|
| 13 |
+
downscale_freq_shift: float = 1,
|
| 14 |
+
scale: float = 1,
|
| 15 |
+
max_period: int = 10000,
|
| 16 |
+
):
|
| 17 |
+
"""
|
| 18 |
+
This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.
|
| 19 |
+
|
| 20 |
+
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
| 21 |
+
These may be fractional.
|
| 22 |
+
:param embedding_dim: the dimension of the output. :param max_period: controls the minimum frequency of the
|
| 23 |
+
embeddings. :return: an [N x dim] Tensor of positional embeddings.
|
| 24 |
+
"""
|
| 25 |
+
assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"
|
| 26 |
+
|
| 27 |
+
half_dim = embedding_dim // 2
|
| 28 |
+
exponent = -math.log(max_period) * torch.arange(
|
| 29 |
+
start=0, end=half_dim, dtype=torch.float32, device=timesteps.device
|
| 30 |
+
)
|
| 31 |
+
exponent = exponent / (half_dim - downscale_freq_shift)
|
| 32 |
+
|
| 33 |
+
emb = torch.exp(exponent)
|
| 34 |
+
emb = timesteps[:, None].float() * emb[None, :]
|
| 35 |
+
|
| 36 |
+
# scale embeddings
|
| 37 |
+
emb = scale * emb
|
| 38 |
+
|
| 39 |
+
# concat sine and cosine embeddings
|
| 40 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1)
|
| 41 |
+
|
| 42 |
+
# flip sine and cosine embeddings
|
| 43 |
+
if flip_sin_to_cos:
|
| 44 |
+
emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1)
|
| 45 |
+
|
| 46 |
+
# zero pad
|
| 47 |
+
if embedding_dim % 2 == 1:
|
| 48 |
+
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
|
| 49 |
+
return emb
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
# FFN
|
| 53 |
+
def FeedForward(dim, mult=4):
|
| 54 |
+
inner_dim = int(dim * mult)
|
| 55 |
+
return nn.Sequential(
|
| 56 |
+
nn.LayerNorm(dim),
|
| 57 |
+
nn.Linear(dim, inner_dim, bias=False),
|
| 58 |
+
nn.GELU(),
|
| 59 |
+
nn.Linear(inner_dim, dim, bias=False),
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def reshape_tensor(x, heads):
|
| 64 |
+
bs, length, width = x.shape
|
| 65 |
+
#(bs, length, width) --> (bs, length, n_heads, dim_per_head)
|
| 66 |
+
x = x.view(bs, length, heads, -1)
|
| 67 |
+
# (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
|
| 68 |
+
x = x.transpose(1, 2)
|
| 69 |
+
# (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
|
| 70 |
+
x = x.reshape(bs, heads, length, -1)
|
| 71 |
+
return x
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
class PerceiverAttention(nn.Module):
|
| 75 |
+
def __init__(self, *, dim, dim_head=64, heads=8):
|
| 76 |
+
super().__init__()
|
| 77 |
+
self.scale = dim_head**-0.5
|
| 78 |
+
self.dim_head = dim_head
|
| 79 |
+
self.heads = heads
|
| 80 |
+
inner_dim = dim_head * heads
|
| 81 |
+
|
| 82 |
+
self.norm1 = nn.LayerNorm(dim)
|
| 83 |
+
self.norm2 = nn.LayerNorm(dim)
|
| 84 |
+
|
| 85 |
+
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
| 86 |
+
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
|
| 87 |
+
self.to_out = nn.Linear(inner_dim, dim, bias=False)
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
def forward(self, x, latents, shift=None, scale=None):
|
| 91 |
+
"""
|
| 92 |
+
Args:
|
| 93 |
+
x (torch.Tensor): image features
|
| 94 |
+
shape (b, n1, D)
|
| 95 |
+
latent (torch.Tensor): latent features
|
| 96 |
+
shape (b, n2, D)
|
| 97 |
+
"""
|
| 98 |
+
x = self.norm1(x)
|
| 99 |
+
latents = self.norm2(latents)
|
| 100 |
+
|
| 101 |
+
if shift is not None and scale is not None:
|
| 102 |
+
latents = latents * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
|
| 103 |
+
|
| 104 |
+
b, l, _ = latents.shape
|
| 105 |
+
|
| 106 |
+
q = self.to_q(latents)
|
| 107 |
+
kv_input = torch.cat((x, latents), dim=-2)
|
| 108 |
+
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
|
| 109 |
+
|
| 110 |
+
q = reshape_tensor(q, self.heads)
|
| 111 |
+
k = reshape_tensor(k, self.heads)
|
| 112 |
+
v = reshape_tensor(v, self.heads)
|
| 113 |
+
|
| 114 |
+
# attention
|
| 115 |
+
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
|
| 116 |
+
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
|
| 117 |
+
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
|
| 118 |
+
out = weight @ v
|
| 119 |
+
|
| 120 |
+
out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
|
| 121 |
+
|
| 122 |
+
return self.to_out(out)
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
class Resampler(nn.Module):
|
| 126 |
+
def __init__(
|
| 127 |
+
self,
|
| 128 |
+
dim=1024,
|
| 129 |
+
depth=8,
|
| 130 |
+
dim_head=64,
|
| 131 |
+
heads=16,
|
| 132 |
+
num_queries=8,
|
| 133 |
+
embedding_dim=768,
|
| 134 |
+
output_dim=1024,
|
| 135 |
+
ff_mult=4,
|
| 136 |
+
*args,
|
| 137 |
+
**kwargs,
|
| 138 |
+
):
|
| 139 |
+
super().__init__()
|
| 140 |
+
|
| 141 |
+
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
|
| 142 |
+
|
| 143 |
+
self.proj_in = nn.Linear(embedding_dim, dim)
|
| 144 |
+
|
| 145 |
+
self.proj_out = nn.Linear(dim, output_dim)
|
| 146 |
+
self.norm_out = nn.LayerNorm(output_dim)
|
| 147 |
+
|
| 148 |
+
self.layers = nn.ModuleList([])
|
| 149 |
+
for _ in range(depth):
|
| 150 |
+
self.layers.append(
|
| 151 |
+
nn.ModuleList(
|
| 152 |
+
[
|
| 153 |
+
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
|
| 154 |
+
FeedForward(dim=dim, mult=ff_mult),
|
| 155 |
+
]
|
| 156 |
+
)
|
| 157 |
+
)
|
| 158 |
+
|
| 159 |
+
def forward(self, x):
|
| 160 |
+
|
| 161 |
+
latents = self.latents.repeat(x.size(0), 1, 1)
|
| 162 |
+
|
| 163 |
+
x = self.proj_in(x)
|
| 164 |
+
|
| 165 |
+
for attn, ff in self.layers:
|
| 166 |
+
latents = attn(x, latents) + latents
|
| 167 |
+
latents = ff(latents) + latents
|
| 168 |
+
|
| 169 |
+
latents = self.proj_out(latents)
|
| 170 |
+
return self.norm_out(latents)
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
class TimeResampler(nn.Module):
|
| 174 |
+
def __init__(
|
| 175 |
+
self,
|
| 176 |
+
dim=1024,
|
| 177 |
+
depth=8,
|
| 178 |
+
dim_head=64,
|
| 179 |
+
heads=16,
|
| 180 |
+
num_queries=8,
|
| 181 |
+
embedding_dim=768,
|
| 182 |
+
output_dim=1024,
|
| 183 |
+
ff_mult=4,
|
| 184 |
+
timestep_in_dim=320,
|
| 185 |
+
timestep_flip_sin_to_cos=True,
|
| 186 |
+
timestep_freq_shift=0,
|
| 187 |
+
):
|
| 188 |
+
super().__init__()
|
| 189 |
+
|
| 190 |
+
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
|
| 191 |
+
|
| 192 |
+
self.proj_in = nn.Linear(embedding_dim, dim)
|
| 193 |
+
|
| 194 |
+
self.proj_out = nn.Linear(dim, output_dim)
|
| 195 |
+
self.norm_out = nn.LayerNorm(output_dim)
|
| 196 |
+
|
| 197 |
+
self.layers = nn.ModuleList([])
|
| 198 |
+
for _ in range(depth):
|
| 199 |
+
self.layers.append(
|
| 200 |
+
nn.ModuleList(
|
| 201 |
+
[
|
| 202 |
+
# msa
|
| 203 |
+
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
|
| 204 |
+
# ff
|
| 205 |
+
FeedForward(dim=dim, mult=ff_mult),
|
| 206 |
+
# adaLN
|
| 207 |
+
nn.Sequential(nn.SiLU(), nn.Linear(dim, 4 * dim, bias=True))
|
| 208 |
+
]
|
| 209 |
+
)
|
| 210 |
+
)
|
| 211 |
+
|
| 212 |
+
# time
|
| 213 |
+
self.time_proj = Timesteps(timestep_in_dim, timestep_flip_sin_to_cos, timestep_freq_shift)
|
| 214 |
+
self.time_embedding = TimestepEmbedding(timestep_in_dim, dim, act_fn="silu")
|
| 215 |
+
|
| 216 |
+
# adaLN
|
| 217 |
+
# self.adaLN_modulation = nn.Sequential(
|
| 218 |
+
# nn.SiLU(),
|
| 219 |
+
# nn.Linear(timestep_out_dim, 6 * timestep_out_dim, bias=True)
|
| 220 |
+
# )
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
def forward(self, x, timestep, need_temb=False):
|
| 224 |
+
timestep_emb = self.embedding_time(x, timestep) # bs, dim
|
| 225 |
+
|
| 226 |
+
latents = self.latents.repeat(x.size(0), 1, 1)
|
| 227 |
+
|
| 228 |
+
x = self.proj_in(x)
|
| 229 |
+
x = x + timestep_emb[:, None]
|
| 230 |
+
|
| 231 |
+
for attn, ff, adaLN_modulation in self.layers:
|
| 232 |
+
shift_msa, scale_msa, shift_mlp, scale_mlp = adaLN_modulation(timestep_emb).chunk(4, dim=1)
|
| 233 |
+
latents = attn(x, latents, shift_msa, scale_msa) + latents
|
| 234 |
+
|
| 235 |
+
res = latents
|
| 236 |
+
for idx_ff in range(len(ff)):
|
| 237 |
+
layer_ff = ff[idx_ff]
|
| 238 |
+
latents = layer_ff(latents)
|
| 239 |
+
if idx_ff == 0 and isinstance(layer_ff, nn.LayerNorm): # adaLN
|
| 240 |
+
latents = latents * (1 + scale_mlp.unsqueeze(1)) + shift_mlp.unsqueeze(1)
|
| 241 |
+
latents = latents + res
|
| 242 |
+
|
| 243 |
+
# latents = ff(latents) + latents
|
| 244 |
+
|
| 245 |
+
latents = self.proj_out(latents)
|
| 246 |
+
latents = self.norm_out(latents)
|
| 247 |
+
|
| 248 |
+
if need_temb:
|
| 249 |
+
return latents, timestep_emb
|
| 250 |
+
else:
|
| 251 |
+
return latents
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
|
| 255 |
+
def embedding_time(self, sample, timestep):
|
| 256 |
+
|
| 257 |
+
# 1. time
|
| 258 |
+
timesteps = timestep
|
| 259 |
+
if not torch.is_tensor(timesteps):
|
| 260 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
| 261 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
| 262 |
+
is_mps = sample.device.type == "mps"
|
| 263 |
+
if isinstance(timestep, float):
|
| 264 |
+
dtype = torch.float32 if is_mps else torch.float64
|
| 265 |
+
else:
|
| 266 |
+
dtype = torch.int32 if is_mps else torch.int64
|
| 267 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
| 268 |
+
elif len(timesteps.shape) == 0:
|
| 269 |
+
timesteps = timesteps[None].to(sample.device)
|
| 270 |
+
|
| 271 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
| 272 |
+
timesteps = timesteps.expand(sample.shape[0])
|
| 273 |
+
|
| 274 |
+
t_emb = self.time_proj(timesteps)
|
| 275 |
+
|
| 276 |
+
# timesteps does not contain any weights and will always return f32 tensors
|
| 277 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
| 278 |
+
# there might be better ways to encapsulate this.
|
| 279 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
| 280 |
+
|
| 281 |
+
emb = self.time_embedding(t_emb, None)
|
| 282 |
+
return emb
|
| 283 |
+
|
| 284 |
+
|
| 285 |
+
|
| 286 |
+
|
| 287 |
+
|
| 288 |
+
if __name__ == '__main__':
|
| 289 |
+
model = TimeResampler(
|
| 290 |
+
dim=1280,
|
| 291 |
+
depth=4,
|
| 292 |
+
dim_head=64,
|
| 293 |
+
heads=20,
|
| 294 |
+
num_queries=16,
|
| 295 |
+
embedding_dim=512,
|
| 296 |
+
output_dim=2048,
|
| 297 |
+
ff_mult=4,
|
| 298 |
+
timestep_in_dim=320,
|
| 299 |
+
timestep_flip_sin_to_cos=True,
|
| 300 |
+
timestep_freq_shift=0,
|
| 301 |
+
in_channel_extra_emb=2048,
|
| 302 |
+
)
|
| 303 |
+
|
| 304 |
+
|
models/transformer_sd3.py
ADDED
|
@@ -0,0 +1,375 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 Stability AI, The HuggingFace Team and The InstantX Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
| 17 |
+
|
| 18 |
+
import torch
|
| 19 |
+
import torch.nn as nn
|
| 20 |
+
|
| 21 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 22 |
+
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
|
| 23 |
+
from .attention import JointTransformerBlock
|
| 24 |
+
from diffusers.models.attention_processor import Attention, AttentionProcessor, FusedJointAttnProcessor2_0
|
| 25 |
+
from diffusers.models.modeling_utils import ModelMixin
|
| 26 |
+
from diffusers.models.normalization import AdaLayerNormContinuous
|
| 27 |
+
from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
|
| 28 |
+
from diffusers.models.embeddings import CombinedTimestepTextProjEmbeddings, PatchEmbed
|
| 29 |
+
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
class SD3Transformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
|
| 36 |
+
"""
|
| 37 |
+
The Transformer model introduced in Stable Diffusion 3.
|
| 38 |
+
|
| 39 |
+
Reference: https://arxiv.org/abs/2403.03206
|
| 40 |
+
|
| 41 |
+
Parameters:
|
| 42 |
+
sample_size (`int`): The width of the latent images. This is fixed during training since
|
| 43 |
+
it is used to learn a number of position embeddings.
|
| 44 |
+
patch_size (`int`): Patch size to turn the input data into small patches.
|
| 45 |
+
in_channels (`int`, *optional*, defaults to 16): The number of channels in the input.
|
| 46 |
+
num_layers (`int`, *optional*, defaults to 18): The number of layers of Transformer blocks to use.
|
| 47 |
+
attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.
|
| 48 |
+
num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention.
|
| 49 |
+
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
| 50 |
+
caption_projection_dim (`int`): Number of dimensions to use when projecting the `encoder_hidden_states`.
|
| 51 |
+
pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`.
|
| 52 |
+
out_channels (`int`, defaults to 16): Number of output channels.
|
| 53 |
+
|
| 54 |
+
"""
|
| 55 |
+
|
| 56 |
+
_supports_gradient_checkpointing = True
|
| 57 |
+
|
| 58 |
+
@register_to_config
|
| 59 |
+
def __init__(
|
| 60 |
+
self,
|
| 61 |
+
sample_size: int = 128,
|
| 62 |
+
patch_size: int = 2,
|
| 63 |
+
in_channels: int = 16,
|
| 64 |
+
num_layers: int = 18,
|
| 65 |
+
attention_head_dim: int = 64,
|
| 66 |
+
num_attention_heads: int = 18,
|
| 67 |
+
joint_attention_dim: int = 4096,
|
| 68 |
+
caption_projection_dim: int = 1152,
|
| 69 |
+
pooled_projection_dim: int = 2048,
|
| 70 |
+
out_channels: int = 16,
|
| 71 |
+
pos_embed_max_size: int = 96,
|
| 72 |
+
dual_attention_layers: Tuple[
|
| 73 |
+
int, ...
|
| 74 |
+
] = (), # () for sd3.0; (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) for sd3.5
|
| 75 |
+
qk_norm: Optional[str] = None,
|
| 76 |
+
):
|
| 77 |
+
super().__init__()
|
| 78 |
+
default_out_channels = in_channels
|
| 79 |
+
self.out_channels = out_channels if out_channels is not None else default_out_channels
|
| 80 |
+
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
|
| 81 |
+
|
| 82 |
+
self.pos_embed = PatchEmbed(
|
| 83 |
+
height=self.config.sample_size,
|
| 84 |
+
width=self.config.sample_size,
|
| 85 |
+
patch_size=self.config.patch_size,
|
| 86 |
+
in_channels=self.config.in_channels,
|
| 87 |
+
embed_dim=self.inner_dim,
|
| 88 |
+
pos_embed_max_size=pos_embed_max_size, # hard-code for now.
|
| 89 |
+
)
|
| 90 |
+
self.time_text_embed = CombinedTimestepTextProjEmbeddings(
|
| 91 |
+
embedding_dim=self.inner_dim, pooled_projection_dim=self.config.pooled_projection_dim
|
| 92 |
+
)
|
| 93 |
+
self.context_embedder = nn.Linear(self.config.joint_attention_dim, self.config.caption_projection_dim)
|
| 94 |
+
|
| 95 |
+
# `attention_head_dim` is doubled to account for the mixing.
|
| 96 |
+
# It needs to crafted when we get the actual checkpoints.
|
| 97 |
+
self.transformer_blocks = nn.ModuleList(
|
| 98 |
+
[
|
| 99 |
+
JointTransformerBlock(
|
| 100 |
+
dim=self.inner_dim,
|
| 101 |
+
num_attention_heads=self.config.num_attention_heads,
|
| 102 |
+
attention_head_dim=self.config.attention_head_dim,
|
| 103 |
+
context_pre_only=i == num_layers - 1,
|
| 104 |
+
qk_norm=qk_norm,
|
| 105 |
+
use_dual_attention=True if i in dual_attention_layers else False,
|
| 106 |
+
)
|
| 107 |
+
for i in range(self.config.num_layers)
|
| 108 |
+
]
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
|
| 112 |
+
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
|
| 113 |
+
|
| 114 |
+
self.gradient_checkpointing = False
|
| 115 |
+
|
| 116 |
+
# Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking
|
| 117 |
+
def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None:
|
| 118 |
+
"""
|
| 119 |
+
Sets the attention processor to use [feed forward
|
| 120 |
+
chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers).
|
| 121 |
+
|
| 122 |
+
Parameters:
|
| 123 |
+
chunk_size (`int`, *optional*):
|
| 124 |
+
The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually
|
| 125 |
+
over each tensor of dim=`dim`.
|
| 126 |
+
dim (`int`, *optional*, defaults to `0`):
|
| 127 |
+
The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch)
|
| 128 |
+
or dim=1 (sequence length).
|
| 129 |
+
"""
|
| 130 |
+
if dim not in [0, 1]:
|
| 131 |
+
raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}")
|
| 132 |
+
|
| 133 |
+
# By default chunk size is 1
|
| 134 |
+
chunk_size = chunk_size or 1
|
| 135 |
+
|
| 136 |
+
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
|
| 137 |
+
if hasattr(module, "set_chunk_feed_forward"):
|
| 138 |
+
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)
|
| 139 |
+
|
| 140 |
+
for child in module.children():
|
| 141 |
+
fn_recursive_feed_forward(child, chunk_size, dim)
|
| 142 |
+
|
| 143 |
+
for module in self.children():
|
| 144 |
+
fn_recursive_feed_forward(module, chunk_size, dim)
|
| 145 |
+
|
| 146 |
+
# Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.disable_forward_chunking
|
| 147 |
+
def disable_forward_chunking(self):
|
| 148 |
+
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
|
| 149 |
+
if hasattr(module, "set_chunk_feed_forward"):
|
| 150 |
+
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)
|
| 151 |
+
|
| 152 |
+
for child in module.children():
|
| 153 |
+
fn_recursive_feed_forward(child, chunk_size, dim)
|
| 154 |
+
|
| 155 |
+
for module in self.children():
|
| 156 |
+
fn_recursive_feed_forward(module, None, 0)
|
| 157 |
+
|
| 158 |
+
@property
|
| 159 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
| 160 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
| 161 |
+
r"""
|
| 162 |
+
Returns:
|
| 163 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
| 164 |
+
indexed by its weight name.
|
| 165 |
+
"""
|
| 166 |
+
# set recursively
|
| 167 |
+
processors = {}
|
| 168 |
+
|
| 169 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
| 170 |
+
if hasattr(module, "get_processor"):
|
| 171 |
+
processors[f"{name}.processor"] = module.get_processor()
|
| 172 |
+
|
| 173 |
+
for sub_name, child in module.named_children():
|
| 174 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
| 175 |
+
|
| 176 |
+
return processors
|
| 177 |
+
|
| 178 |
+
for name, module in self.named_children():
|
| 179 |
+
fn_recursive_add_processors(name, module, processors)
|
| 180 |
+
|
| 181 |
+
return processors
|
| 182 |
+
|
| 183 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
| 184 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
| 185 |
+
r"""
|
| 186 |
+
Sets the attention processor to use to compute attention.
|
| 187 |
+
|
| 188 |
+
Parameters:
|
| 189 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
| 190 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
| 191 |
+
for **all** `Attention` layers.
|
| 192 |
+
|
| 193 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
| 194 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
| 195 |
+
|
| 196 |
+
"""
|
| 197 |
+
count = len(self.attn_processors.keys())
|
| 198 |
+
|
| 199 |
+
if isinstance(processor, dict) and len(processor) != count:
|
| 200 |
+
raise ValueError(
|
| 201 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
| 202 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
| 203 |
+
)
|
| 204 |
+
|
| 205 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
| 206 |
+
if hasattr(module, "set_processor"):
|
| 207 |
+
if not isinstance(processor, dict):
|
| 208 |
+
module.set_processor(processor)
|
| 209 |
+
else:
|
| 210 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
| 211 |
+
|
| 212 |
+
for sub_name, child in module.named_children():
|
| 213 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
| 214 |
+
|
| 215 |
+
for name, module in self.named_children():
|
| 216 |
+
fn_recursive_attn_processor(name, module, processor)
|
| 217 |
+
|
| 218 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedJointAttnProcessor2_0
|
| 219 |
+
def fuse_qkv_projections(self):
|
| 220 |
+
"""
|
| 221 |
+
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
|
| 222 |
+
are fused. For cross-attention modules, key and value projection matrices are fused.
|
| 223 |
+
|
| 224 |
+
<Tip warning={true}>
|
| 225 |
+
|
| 226 |
+
This API is 🧪 experimental.
|
| 227 |
+
|
| 228 |
+
</Tip>
|
| 229 |
+
"""
|
| 230 |
+
self.original_attn_processors = None
|
| 231 |
+
|
| 232 |
+
for _, attn_processor in self.attn_processors.items():
|
| 233 |
+
if "Added" in str(attn_processor.__class__.__name__):
|
| 234 |
+
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
|
| 235 |
+
|
| 236 |
+
self.original_attn_processors = self.attn_processors
|
| 237 |
+
|
| 238 |
+
for module in self.modules():
|
| 239 |
+
if isinstance(module, Attention):
|
| 240 |
+
module.fuse_projections(fuse=True)
|
| 241 |
+
|
| 242 |
+
self.set_attn_processor(FusedJointAttnProcessor2_0())
|
| 243 |
+
|
| 244 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
|
| 245 |
+
def unfuse_qkv_projections(self):
|
| 246 |
+
"""Disables the fused QKV projection if enabled.
|
| 247 |
+
|
| 248 |
+
<Tip warning={true}>
|
| 249 |
+
|
| 250 |
+
This API is 🧪 experimental.
|
| 251 |
+
|
| 252 |
+
</Tip>
|
| 253 |
+
|
| 254 |
+
"""
|
| 255 |
+
if self.original_attn_processors is not None:
|
| 256 |
+
self.set_attn_processor(self.original_attn_processors)
|
| 257 |
+
|
| 258 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 259 |
+
if hasattr(module, "gradient_checkpointing"):
|
| 260 |
+
module.gradient_checkpointing = value
|
| 261 |
+
|
| 262 |
+
def forward(
|
| 263 |
+
self,
|
| 264 |
+
hidden_states: torch.FloatTensor,
|
| 265 |
+
encoder_hidden_states: torch.FloatTensor = None,
|
| 266 |
+
pooled_projections: torch.FloatTensor = None,
|
| 267 |
+
timestep: torch.LongTensor = None,
|
| 268 |
+
block_controlnet_hidden_states: List = None,
|
| 269 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 270 |
+
return_dict: bool = True,
|
| 271 |
+
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
|
| 272 |
+
"""
|
| 273 |
+
The [`SD3Transformer2DModel`] forward method.
|
| 274 |
+
|
| 275 |
+
Args:
|
| 276 |
+
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
|
| 277 |
+
Input `hidden_states`.
|
| 278 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
|
| 279 |
+
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
| 280 |
+
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
|
| 281 |
+
from the embeddings of input conditions.
|
| 282 |
+
timestep ( `torch.LongTensor`):
|
| 283 |
+
Used to indicate denoising step.
|
| 284 |
+
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
|
| 285 |
+
A list of tensors that if specified are added to the residuals of transformer blocks.
|
| 286 |
+
joint_attention_kwargs (`dict`, *optional*):
|
| 287 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
| 288 |
+
`self.processor` in
|
| 289 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
| 290 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 291 |
+
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
| 292 |
+
tuple.
|
| 293 |
+
|
| 294 |
+
Returns:
|
| 295 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
| 296 |
+
`tuple` where the first element is the sample tensor.
|
| 297 |
+
"""
|
| 298 |
+
if joint_attention_kwargs is not None:
|
| 299 |
+
joint_attention_kwargs = joint_attention_kwargs.copy()
|
| 300 |
+
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
| 301 |
+
else:
|
| 302 |
+
lora_scale = 1.0
|
| 303 |
+
|
| 304 |
+
if USE_PEFT_BACKEND:
|
| 305 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
| 306 |
+
scale_lora_layers(self, lora_scale)
|
| 307 |
+
else:
|
| 308 |
+
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
|
| 309 |
+
logger.warning(
|
| 310 |
+
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
| 311 |
+
)
|
| 312 |
+
|
| 313 |
+
height, width = hidden_states.shape[-2:]
|
| 314 |
+
|
| 315 |
+
hidden_states = self.pos_embed(hidden_states) # takes care of adding positional embeddings too.
|
| 316 |
+
temb = self.time_text_embed(timestep, pooled_projections)
|
| 317 |
+
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
| 318 |
+
|
| 319 |
+
for index_block, block in enumerate(self.transformer_blocks):
|
| 320 |
+
if self.training and self.gradient_checkpointing:
|
| 321 |
+
|
| 322 |
+
def create_custom_forward(module, return_dict=None):
|
| 323 |
+
def custom_forward(*inputs):
|
| 324 |
+
if return_dict is not None:
|
| 325 |
+
return module(*inputs, return_dict=return_dict)
|
| 326 |
+
else:
|
| 327 |
+
return module(*inputs)
|
| 328 |
+
|
| 329 |
+
return custom_forward
|
| 330 |
+
|
| 331 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
| 332 |
+
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
|
| 333 |
+
create_custom_forward(block),
|
| 334 |
+
hidden_states,
|
| 335 |
+
encoder_hidden_states,
|
| 336 |
+
temb,
|
| 337 |
+
joint_attention_kwargs,
|
| 338 |
+
**ckpt_kwargs,
|
| 339 |
+
)
|
| 340 |
+
|
| 341 |
+
else:
|
| 342 |
+
encoder_hidden_states, hidden_states = block(
|
| 343 |
+
hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=temb,
|
| 344 |
+
joint_attention_kwargs=joint_attention_kwargs,
|
| 345 |
+
)
|
| 346 |
+
|
| 347 |
+
# controlnet residual
|
| 348 |
+
if block_controlnet_hidden_states is not None and block.context_pre_only is False:
|
| 349 |
+
interval_control = len(self.transformer_blocks) // len(block_controlnet_hidden_states)
|
| 350 |
+
hidden_states = hidden_states + block_controlnet_hidden_states[index_block // interval_control]
|
| 351 |
+
|
| 352 |
+
hidden_states = self.norm_out(hidden_states, temb)
|
| 353 |
+
hidden_states = self.proj_out(hidden_states)
|
| 354 |
+
|
| 355 |
+
# unpatchify
|
| 356 |
+
patch_size = self.config.patch_size
|
| 357 |
+
height = height // patch_size
|
| 358 |
+
width = width // patch_size
|
| 359 |
+
|
| 360 |
+
hidden_states = hidden_states.reshape(
|
| 361 |
+
shape=(hidden_states.shape[0], height, width, patch_size, patch_size, self.out_channels)
|
| 362 |
+
)
|
| 363 |
+
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
|
| 364 |
+
output = hidden_states.reshape(
|
| 365 |
+
shape=(hidden_states.shape[0], self.out_channels, height * patch_size, width * patch_size)
|
| 366 |
+
)
|
| 367 |
+
|
| 368 |
+
if USE_PEFT_BACKEND:
|
| 369 |
+
# remove `lora_scale` from each PEFT layer
|
| 370 |
+
unscale_lora_layers(self, lora_scale)
|
| 371 |
+
|
| 372 |
+
if not return_dict:
|
| 373 |
+
return (output,)
|
| 374 |
+
|
| 375 |
+
return Transformer2DModelOutput(sample=output)
|