File size: 10,462 Bytes
038f313
fab24df
c5a20a4
2d6eaa5
 
038f313
db00df1
2d6eaa5
c6bdd15
2d6eaa5
 
 
 
 
 
5b8ad4f
2d6eaa5
 
038f313
 
27c8b8d
 
 
038f313
 
 
3a64d68
98674ca
5b8ad4f
2d6eaa5
038f313
0ef95ea
2d6eaa5
0ef95ea
 
 
5b8ad4f
2d6eaa5
f7c4208
901bafe
0ef95ea
 
038f313
2d6eaa5
c5a20a4
2d6eaa5
901bafe
5b8ad4f
27c8b8d
2d6eaa5
 
 
 
 
 
 
 
27c8b8d
5b8ad4f
 
2d6eaa5
4df41b9
5b8ad4f
2d6eaa5
5b8ad4f
0ef95ea
2d6eaa5
0ef95ea
2d6eaa5
 
 
 
 
 
5b8ad4f
 
 
 
 
 
 
 
2d6eaa5
5b8ad4f
2d6eaa5
 
5b8ad4f
 
2d6eaa5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ef95ea
901bafe
2d6eaa5
f7c4208
2d6eaa5
0ef95ea
a8fc89d
2d6eaa5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
901bafe
5b8ad4f
2d6eaa5
 
5b8ad4f
4df41b9
 
2d6eaa5
 
5b8ad4f
2d6eaa5
5b8ad4f
2d6eaa5
901bafe
a8fc89d
2d6eaa5
 
 
 
 
 
 
b0cbd1c
a8fc89d
5b8ad4f
 
30153c5
 
 
 
 
 
817474e
2d6eaa5
a8fc89d
5b8ad4f
 
 
901bafe
0ef95ea
901bafe
5b8ad4f
 
2d6eaa5
 
 
 
 
0ef95ea
b0cbd1c
5b8ad4f
2d6eaa5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b8ad4f
 
 
 
2d6eaa5
5b8ad4f
2d6eaa5
5b8ad4f
 
 
4df41b9
b0cbd1c
0ef95ea
b0cbd1c
0ef95ea
2d6eaa5
5b8ad4f
2d6eaa5
 
 
 
 
 
5b8ad4f
2d6eaa5
 
 
 
 
 
 
 
5b8ad4f
2d6eaa5
 
 
 
 
a8fc89d
2d6eaa5
769901b
77298b9
5b8ad4f
2d6eaa5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import gradio as gr
from openai import OpenAI
import os
import requests
import json

ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")

# Initialize the OpenAI client for HF Inference
hf_client = OpenAI(
    base_url="https://api-inference.huggingface.co/v1/",
    api_key=ACCESS_TOKEN,
)
print("HF Inference OpenAI client initialized.")

# Cerebras API endpoint
CEREBRAS_API_URL = "https://router.huggingface.co/cerebras/v1/chat/completions"

def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
    frequency_penalty,
    seed,
    custom_model,
    provider  # New parameter for provider selection
):
    print(f"Received message: {message}")
    print(f"History: {history}")
    print(f"System message: {system_message}")
    print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
    print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
    print(f"Selected model (custom_model): {custom_model}")
    print(f"Selected provider: {provider}")

    # Convert seed to None if -1 (meaning random)
    if seed == -1:
        seed = None

    # Prepare messages for API
    messages = [{"role": "system", "content": system_message}]
    print("Initial messages array constructed.")

    # Add conversation history to the context
    for val in history:
        user_part = val[0]
        assistant_part = val[1]
        if user_part:
            messages.append({"role": "user", "content": user_part})
            print(f"Added user message to context: {user_part}")
        if assistant_part:
            messages.append({"role": "assistant", "content": assistant_part})
            print(f"Added assistant message to context: {assistant_part}")

    # Append the latest user message
    messages.append({"role": "user", "content": message})
    print("Latest user message appended.")

    # If user provided a model, use that; otherwise, fall back to a default model
    model_to_use = custom_model.strip() if custom_model.strip() != "" else "meta-llama/Llama-3.3-70B-Instruct"
    print(f"Model selected for inference: {model_to_use}")

    # Start with an empty string to build the response as tokens stream in
    response = ""
    
    # Handle different providers
    if provider == "hf-inference":
        print("Using HF Inference API.")
        # Use the OpenAI client for HF Inference
        for message_chunk in hf_client.chat.completions.create(
            model=model_to_use,
            max_tokens=max_tokens,
            stream=True,
            temperature=temperature,
            top_p=top_p,
            frequency_penalty=frequency_penalty,
            seed=seed,
            messages=messages,
        ):
            token_text = message_chunk.choices[0].delta.content
            if token_text is not None:  # Handle None values that might come in stream
                print(f"Received token: {token_text}")
                response += token_text
                yield response
    
    elif provider == "cerebras":
        print("Using Cerebras API via HF Router.")
        
        # Prepare headers and payload for the Cerebras API
        headers = {
            "Authorization": f"Bearer {ACCESS_TOKEN}",
            "Content-Type": "application/json"
        }
        
        payload = {
            "model": model_to_use,
            "messages": messages,
            "max_tokens": max_tokens,
            "temperature": temperature,
            "top_p": top_p,
            "frequency_penalty": frequency_penalty,
            "stream": True
        }
        
        if seed is not None:
            payload["seed"] = seed
        
        # Make the streaming request to Cerebras
        with requests.post(
            CEREBRAS_API_URL,
            headers=headers,
            json=payload,
            stream=True
        ) as req:
            # Handle Server-Sent Events (SSE) format
            for line in req.iter_lines():
                if line:
                    # Skip the "data: " prefix
                    if line.startswith(b'data: '):
                        line = line[6:]
                    
                    # Skip "[DONE]" message
                    if line == b'[DONE]':
                        continue
                    
                    try:
                        # Parse the JSON chunk
                        chunk = json.loads(line)
                        token_text = chunk.get("choices", [{}])[0].get("delta", {}).get("content")
                        
                        if token_text:
                            print(f"Received Cerebras token: {token_text}")
                            response += token_text
                            yield response
                    except json.JSONDecodeError as e:
                        print(f"Error decoding JSON: {e}, Line: {line}")
                        continue
    
    print("Completed response generation.")

# GRADIO UI

chatbot = gr.Chatbot(height=600, show_copy_button=True, placeholder="Select a model and begin chatting", layout="panel")
print("Chatbot interface created.")

system_message_box = gr.Textbox(value="", placeholder="You are a helpful assistant.", label="System Prompt")

max_tokens_slider = gr.Slider(
    minimum=1,
    maximum=4096,
    value=512,
    step=1,
    label="Max new tokens"
)
temperature_slider = gr.Slider(
    minimum=0.1,
    maximum=4.0,
    value=0.7,
    step=0.1,
    label="Temperature"
)
top_p_slider = gr.Slider(
    minimum=0.1,
    maximum=1.0,
    value=0.95,
    step=0.05,
    label="Top-P"
)
frequency_penalty_slider = gr.Slider(
    minimum=-2.0,
    maximum=2.0,
    value=0.0,
    step=0.1,
    label="Frequency Penalty"
)
seed_slider = gr.Slider(
    minimum=-1,
    maximum=65535,
    value=-1,
    step=1,
    label="Seed (-1 for random)"
)

# The custom_model_box is what the respond function sees as "custom_model"
custom_model_box = gr.Textbox(
    value="",
    label="Custom Model",
    info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model.",
    placeholder="meta-llama/Llama-3.3-70B-Instruct"
)

# New provider selection radio
provider_radio = gr.Radio(
    choices=["hf-inference", "cerebras"],
    value="hf-inference",
    label="Inference Provider",
    info="Select which inference provider to use"
)

def set_custom_model_from_radio(selected):
    """
    This function will get triggered whenever someone picks a model from the 'Featured Models' radio.
    We will update the Custom Model text box with that selection automatically.
    """
    print(f"Featured model selected: {selected}")
    return selected

demo = gr.ChatInterface(
    fn=respond,
    additional_inputs=[
        system_message_box,
        max_tokens_slider,
        temperature_slider,
        top_p_slider,
        frequency_penalty_slider,
        seed_slider,
        custom_model_box,
        provider_radio,  # Add provider selection to inputs
    ],
    fill_height=True,
    chatbot=chatbot,
    theme="Nymbo/Nymbo_Theme",
)
print("ChatInterface object created.")

with demo:
    with gr.Accordion("Model Selection", open=False):
        model_search_box = gr.Textbox(
            label="Filter Models",
            placeholder="Search for a featured model...",
            lines=1
        )
        print("Model search box created.")

        models_list = [
            "meta-llama/Llama-3.3-70B-Instruct",
            "meta-llama/Llama-3.1-70B-Instruct",
            "meta-llama/Llama-3.0-70B-Instruct",
            "meta-llama/Llama-3.2-3B-Instruct",
            "meta-llama/Llama-3.2-1B-Instruct",
            "meta-llama/Llama-3.1-8B-Instruct",
            "NousResearch/Hermes-3-Llama-3.1-8B",
            "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
            "mistralai/Mistral-Nemo-Instruct-2407",
            "mistralai/Mixtral-8x7B-Instruct-v0.1",
            "mistralai/Mistral-7B-Instruct-v0.3",
            "mistralai/Mistral-7B-Instruct-v0.2",
            "Qwen/Qwen3-235B-A22B",
            "Qwen/Qwen3-32B",
            "Qwen/Qwen2.5-72B-Instruct",
            "Qwen/Qwen2.5-3B-Instruct",
            "Qwen/Qwen2.5-0.5B-Instruct",
            "Qwen/QwQ-32B",
            "Qwen/Qwen2.5-Coder-32B-Instruct",
            "microsoft/Phi-3.5-mini-instruct",
            "microsoft/Phi-3-mini-128k-instruct",
            "microsoft/Phi-3-mini-4k-instruct",
            "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B",
            "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
            "HuggingFaceH4/zephyr-7b-beta",
            "HuggingFaceTB/SmolLM2-360M-Instruct",
            "tiiuae/falcon-7b-instruct",
            "01-ai/Yi-1.5-34B-Chat",
        ]
        print("Models list initialized.")

        featured_model_radio = gr.Radio(
            label="Select a model below",
            choices=models_list,
            value="meta-llama/Llama-3.3-70B-Instruct",
            interactive=True
        )
        print("Featured models radio button created.")

        def filter_models(search_term):
            print(f"Filtering models with search term: {search_term}")
            filtered = [m for m in models_list if search_term.lower() in m.lower()]
            print(f"Filtered models: {filtered}")
            return gr.update(choices=filtered)

        model_search_box.change(
            fn=filter_models,
            inputs=model_search_box,
            outputs=featured_model_radio
        )
        print("Model search box change event linked.")

        featured_model_radio.change(
            fn=set_custom_model_from_radio,
            inputs=featured_model_radio,
            outputs=custom_model_box
        )
        print("Featured model radio button change event linked.")
    
    # Add new accordion for advanced settings including provider selection
    with gr.Accordion("Advanced Settings", open=False):
        # The provider_radio is already defined above, we're just adding it to the UI here
        gr.Markdown("### Inference Provider")
        gr.Markdown("Select which provider to use for inference. Default is Hugging Face Inference API.")
        # Provider radio is already included in the additional_inputs
        gr.Markdown("Note: Different providers may support different models and parameters.")

print("Gradio interface initialized.")

if __name__ == "__main__":
    print("Launching the demo application.")
    demo.launch(show_api=True)