Spaces:
Running
Running
File size: 10,462 Bytes
038f313 fab24df c5a20a4 2d6eaa5 038f313 db00df1 2d6eaa5 c6bdd15 2d6eaa5 5b8ad4f 2d6eaa5 038f313 27c8b8d 038f313 3a64d68 98674ca 5b8ad4f 2d6eaa5 038f313 0ef95ea 2d6eaa5 0ef95ea 5b8ad4f 2d6eaa5 f7c4208 901bafe 0ef95ea 038f313 2d6eaa5 c5a20a4 2d6eaa5 901bafe 5b8ad4f 27c8b8d 2d6eaa5 27c8b8d 5b8ad4f 2d6eaa5 4df41b9 5b8ad4f 2d6eaa5 5b8ad4f 0ef95ea 2d6eaa5 0ef95ea 2d6eaa5 5b8ad4f 2d6eaa5 5b8ad4f 2d6eaa5 5b8ad4f 2d6eaa5 0ef95ea 901bafe 2d6eaa5 f7c4208 2d6eaa5 0ef95ea a8fc89d 2d6eaa5 901bafe 5b8ad4f 2d6eaa5 5b8ad4f 4df41b9 2d6eaa5 5b8ad4f 2d6eaa5 5b8ad4f 2d6eaa5 901bafe a8fc89d 2d6eaa5 b0cbd1c a8fc89d 5b8ad4f 30153c5 817474e 2d6eaa5 a8fc89d 5b8ad4f 901bafe 0ef95ea 901bafe 5b8ad4f 2d6eaa5 0ef95ea b0cbd1c 5b8ad4f 2d6eaa5 5b8ad4f 2d6eaa5 5b8ad4f 2d6eaa5 5b8ad4f 4df41b9 b0cbd1c 0ef95ea b0cbd1c 0ef95ea 2d6eaa5 5b8ad4f 2d6eaa5 5b8ad4f 2d6eaa5 5b8ad4f 2d6eaa5 a8fc89d 2d6eaa5 769901b 77298b9 5b8ad4f 2d6eaa5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
import gradio as gr
from openai import OpenAI
import os
import requests
import json
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")
# Initialize the OpenAI client for HF Inference
hf_client = OpenAI(
base_url="https://api-inference.huggingface.co/v1/",
api_key=ACCESS_TOKEN,
)
print("HF Inference OpenAI client initialized.")
# Cerebras API endpoint
CEREBRAS_API_URL = "https://router.huggingface.co/cerebras/v1/chat/completions"
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
custom_model,
provider # New parameter for provider selection
):
print(f"Received message: {message}")
print(f"History: {history}")
print(f"System message: {system_message}")
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
print(f"Selected model (custom_model): {custom_model}")
print(f"Selected provider: {provider}")
# Convert seed to None if -1 (meaning random)
if seed == -1:
seed = None
# Prepare messages for API
messages = [{"role": "system", "content": system_message}]
print("Initial messages array constructed.")
# Add conversation history to the context
for val in history:
user_part = val[0]
assistant_part = val[1]
if user_part:
messages.append({"role": "user", "content": user_part})
print(f"Added user message to context: {user_part}")
if assistant_part:
messages.append({"role": "assistant", "content": assistant_part})
print(f"Added assistant message to context: {assistant_part}")
# Append the latest user message
messages.append({"role": "user", "content": message})
print("Latest user message appended.")
# If user provided a model, use that; otherwise, fall back to a default model
model_to_use = custom_model.strip() if custom_model.strip() != "" else "meta-llama/Llama-3.3-70B-Instruct"
print(f"Model selected for inference: {model_to_use}")
# Start with an empty string to build the response as tokens stream in
response = ""
# Handle different providers
if provider == "hf-inference":
print("Using HF Inference API.")
# Use the OpenAI client for HF Inference
for message_chunk in hf_client.chat.completions.create(
model=model_to_use,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
frequency_penalty=frequency_penalty,
seed=seed,
messages=messages,
):
token_text = message_chunk.choices[0].delta.content
if token_text is not None: # Handle None values that might come in stream
print(f"Received token: {token_text}")
response += token_text
yield response
elif provider == "cerebras":
print("Using Cerebras API via HF Router.")
# Prepare headers and payload for the Cerebras API
headers = {
"Authorization": f"Bearer {ACCESS_TOKEN}",
"Content-Type": "application/json"
}
payload = {
"model": model_to_use,
"messages": messages,
"max_tokens": max_tokens,
"temperature": temperature,
"top_p": top_p,
"frequency_penalty": frequency_penalty,
"stream": True
}
if seed is not None:
payload["seed"] = seed
# Make the streaming request to Cerebras
with requests.post(
CEREBRAS_API_URL,
headers=headers,
json=payload,
stream=True
) as req:
# Handle Server-Sent Events (SSE) format
for line in req.iter_lines():
if line:
# Skip the "data: " prefix
if line.startswith(b'data: '):
line = line[6:]
# Skip "[DONE]" message
if line == b'[DONE]':
continue
try:
# Parse the JSON chunk
chunk = json.loads(line)
token_text = chunk.get("choices", [{}])[0].get("delta", {}).get("content")
if token_text:
print(f"Received Cerebras token: {token_text}")
response += token_text
yield response
except json.JSONDecodeError as e:
print(f"Error decoding JSON: {e}, Line: {line}")
continue
print("Completed response generation.")
# GRADIO UI
chatbot = gr.Chatbot(height=600, show_copy_button=True, placeholder="Select a model and begin chatting", layout="panel")
print("Chatbot interface created.")
system_message_box = gr.Textbox(value="", placeholder="You are a helpful assistant.", label="System Prompt")
max_tokens_slider = gr.Slider(
minimum=1,
maximum=4096,
value=512,
step=1,
label="Max new tokens"
)
temperature_slider = gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.7,
step=0.1,
label="Temperature"
)
top_p_slider = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-P"
)
frequency_penalty_slider = gr.Slider(
minimum=-2.0,
maximum=2.0,
value=0.0,
step=0.1,
label="Frequency Penalty"
)
seed_slider = gr.Slider(
minimum=-1,
maximum=65535,
value=-1,
step=1,
label="Seed (-1 for random)"
)
# The custom_model_box is what the respond function sees as "custom_model"
custom_model_box = gr.Textbox(
value="",
label="Custom Model",
info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model.",
placeholder="meta-llama/Llama-3.3-70B-Instruct"
)
# New provider selection radio
provider_radio = gr.Radio(
choices=["hf-inference", "cerebras"],
value="hf-inference",
label="Inference Provider",
info="Select which inference provider to use"
)
def set_custom_model_from_radio(selected):
"""
This function will get triggered whenever someone picks a model from the 'Featured Models' radio.
We will update the Custom Model text box with that selection automatically.
"""
print(f"Featured model selected: {selected}")
return selected
demo = gr.ChatInterface(
fn=respond,
additional_inputs=[
system_message_box,
max_tokens_slider,
temperature_slider,
top_p_slider,
frequency_penalty_slider,
seed_slider,
custom_model_box,
provider_radio, # Add provider selection to inputs
],
fill_height=True,
chatbot=chatbot,
theme="Nymbo/Nymbo_Theme",
)
print("ChatInterface object created.")
with demo:
with gr.Accordion("Model Selection", open=False):
model_search_box = gr.Textbox(
label="Filter Models",
placeholder="Search for a featured model...",
lines=1
)
print("Model search box created.")
models_list = [
"meta-llama/Llama-3.3-70B-Instruct",
"meta-llama/Llama-3.1-70B-Instruct",
"meta-llama/Llama-3.0-70B-Instruct",
"meta-llama/Llama-3.2-3B-Instruct",
"meta-llama/Llama-3.2-1B-Instruct",
"meta-llama/Llama-3.1-8B-Instruct",
"NousResearch/Hermes-3-Llama-3.1-8B",
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
"mistralai/Mistral-Nemo-Instruct-2407",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"mistralai/Mistral-7B-Instruct-v0.3",
"mistralai/Mistral-7B-Instruct-v0.2",
"Qwen/Qwen3-235B-A22B",
"Qwen/Qwen3-32B",
"Qwen/Qwen2.5-72B-Instruct",
"Qwen/Qwen2.5-3B-Instruct",
"Qwen/Qwen2.5-0.5B-Instruct",
"Qwen/QwQ-32B",
"Qwen/Qwen2.5-Coder-32B-Instruct",
"microsoft/Phi-3.5-mini-instruct",
"microsoft/Phi-3-mini-128k-instruct",
"microsoft/Phi-3-mini-4k-instruct",
"deepseek-ai/DeepSeek-R1-Distill-Qwen-32B",
"deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
"HuggingFaceH4/zephyr-7b-beta",
"HuggingFaceTB/SmolLM2-360M-Instruct",
"tiiuae/falcon-7b-instruct",
"01-ai/Yi-1.5-34B-Chat",
]
print("Models list initialized.")
featured_model_radio = gr.Radio(
label="Select a model below",
choices=models_list,
value="meta-llama/Llama-3.3-70B-Instruct",
interactive=True
)
print("Featured models radio button created.")
def filter_models(search_term):
print(f"Filtering models with search term: {search_term}")
filtered = [m for m in models_list if search_term.lower() in m.lower()]
print(f"Filtered models: {filtered}")
return gr.update(choices=filtered)
model_search_box.change(
fn=filter_models,
inputs=model_search_box,
outputs=featured_model_radio
)
print("Model search box change event linked.")
featured_model_radio.change(
fn=set_custom_model_from_radio,
inputs=featured_model_radio,
outputs=custom_model_box
)
print("Featured model radio button change event linked.")
# Add new accordion for advanced settings including provider selection
with gr.Accordion("Advanced Settings", open=False):
# The provider_radio is already defined above, we're just adding it to the UI here
gr.Markdown("### Inference Provider")
gr.Markdown("Select which provider to use for inference. Default is Hugging Face Inference API.")
# Provider radio is already included in the additional_inputs
gr.Markdown("Note: Different providers may support different models and parameters.")
print("Gradio interface initialized.")
if __name__ == "__main__":
print("Launching the demo application.")
demo.launch(show_api=True) |