Spaces:
Running
Running
File size: 20,783 Bytes
038f313 1cee504 c5a20a4 ea82e64 75bf974 038f313 db00df1 2d6eaa5 c6bdd15 75bf974 70d58c7 75bf974 70d58c7 75bf974 038f313 27c8b8d 4c304f3 27c8b8d 038f313 3a64d68 98674ca 9e12544 75bf974 9e12544 9eb0de2 038f313 0ef95ea 45b3867 2d6eaa5 0ef95ea 9e12544 75bf974 9e12544 d92e5cd f7c4208 75bf974 9e12544 8eb1697 9e12544 ba0614b 901bafe 0ef95ea 038f313 4c304f3 45b3867 4c304f3 1cee504 c5a20a4 2d6eaa5 901bafe 5b8ad4f 27c8b8d 4c304f3 45b3867 4c304f3 45b3867 4c304f3 45b3867 4c304f3 45b3867 4c304f3 45b3867 4c304f3 27c8b8d a9862a1 75bf974 a9862a1 3f8952c d92e5cd 5b8ad4f 0ef95ea 2d6eaa5 0ef95ea 1cee504 3b18f78 1cee504 2d6eaa5 1cee504 ba0614b 1cee504 5b8ad4f 1cee504 75bf974 1cee504 2d6eaa5 23119eb 1cee504 23119eb 1cee504 23119eb 1cee504 0ef95ea 901bafe 9e12544 a9862a1 75bf974 d3ba4a2 75bf974 70d58c7 a9862a1 57fd5c0 75bf974 57fd5c0 75bf974 57fd5c0 75bf974 57fd5c0 d3ba4a2 57fd5c0 d3ba4a2 57fd5c0 06cdbf8 a9862a1 75bf974 d92e5cd 75bf974 b0cbd1c 75bf974 45b3867 70d58c7 45b3867 70d58c7 75bf974 4c304f3 70d58c7 4c304f3 75bf974 70d58c7 4c304f3 75bf974 4c304f3 70d58c7 4c304f3 bc17fe3 4c304f3 75bf974 70d58c7 45b3867 70d58c7 45b3867 70d58c7 45b3867 4c304f3 45b3867 70d58c7 75bf974 4c304f3 75bf974 4c304f3 ea82e64 70d58c7 75bf974 45b3867 75bf974 45b3867 75bf974 45b3867 75bf974 fdab9dd d92e5cd ea82e64 d92e5cd a9862a1 fdab9dd ea82e64 7a4f867 ea82e64 7a4f867 a9862a1 9e12544 a9862a1 9e12544 a9862a1 769901b 77298b9 a9862a1 9e12544 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 |
import gradio as gr
from huggingface_hub import InferenceClient
import os
import json
import base64
from PIL import Image
import io
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")
# Function to encode image to base64
def encode_image(image_path):
if not image_path:
print("No image path provided")
return None
try:
print(f"Encoding image from path: {image_path}")
# If it's already a PIL Image
if isinstance(image_path, Image.Image):
image = image_path
else:
# Try to open the image file
image = Image.open(image_path)
# Convert to RGB if image has an alpha channel (RGBA)
if image.mode == 'RGBA':
image = image.convert('RGB')
# Encode to base64
buffered = io.BytesIO()
image.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
print("Image encoded successfully")
return img_str
except Exception as e:
print(f"Error encoding image: {e}")
return None
def respond(
message,
image_files, # Changed parameter name and structure
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
provider,
custom_api_key,
custom_model,
model_search_term,
selected_model
):
print(f"Received message: {message}")
print(f"Received {len(image_files) if image_files else 0} images")
print(f"History: {history}")
print(f"System message: {system_message}")
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
print(f"Selected provider: {provider}")
print(f"Custom API Key provided: {bool(custom_api_key.strip())}")
print(f"Selected model (custom_model): {custom_model}")
print(f"Model search term: {model_search_term}")
print(f"Selected model from radio: {selected_model}")
# Determine which token to use
token_to_use = custom_api_key if custom_api_key.strip() != "" else ACCESS_TOKEN
if custom_api_key.strip() != "":
print("USING CUSTOM API KEY: BYOK token provided by user is being used for authentication")
else:
print("USING DEFAULT API KEY: Environment variable HF_TOKEN is being used for authentication")
# Initialize the Inference Client with the provider and appropriate token
client = InferenceClient(token=token_to_use, provider=provider)
print(f"Hugging Face Inference Client initialized with {provider} provider.")
# Convert seed to None if -1 (meaning random)
if seed == -1:
seed = None
# Create multimodal content if images are present
if image_files and len(image_files) > 0:
# Process the user message to include images
user_content = []
# Add text part if there is any
if message and message.strip():
user_content.append({
"type": "text",
"text": message
})
# Add image parts
for img in image_files:
if img is not None:
# Get raw image data from path
try:
encoded_image = encode_image(img)
if encoded_image:
user_content.append({
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{encoded_image}"
}
})
except Exception as e:
print(f"Error encoding image: {e}")
else:
# Text-only message
user_content = message
# Prepare messages in the format expected by the API
messages = [{"role": "system", "content": system_message}]
print("Initial messages array constructed.")
# Add conversation history to the context
for val in history:
user_part = val[0]
assistant_part = val[1]
if user_part:
# Handle both text-only and multimodal messages in history
if isinstance(user_part, tuple) and len(user_part) == 2:
# This is a multimodal message with text and images
history_content = []
if user_part[0]: # Text
history_content.append({
"type": "text",
"text": user_part[0]
})
for img in user_part[1]: # Images
if img:
try:
encoded_img = encode_image(img)
if encoded_img:
history_content.append({
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{encoded_img}"
}
})
except Exception as e:
print(f"Error encoding history image: {e}")
messages.append({"role": "user", "content": history_content})
else:
# Regular text message
messages.append({"role": "user", "content": user_part})
print(f"Added user message to context (type: {type(user_part)})")
if assistant_part:
messages.append({"role": "assistant", "content": assistant_part})
print(f"Added assistant message to context: {assistant_part}")
# Append the latest user message
messages.append({"role": "user", "content": user_content})
print(f"Latest user message appended (content type: {type(user_content)})")
# Determine which model to use, prioritizing custom_model if provided
model_to_use = custom_model.strip() if custom_model.strip() != "" else selected_model
print(f"Model selected for inference: {model_to_use}")
# Start with an empty string to build the response as tokens stream in
response = ""
print(f"Sending request to {provider} provider.")
# Prepare parameters for the chat completion request
parameters = {
"max_tokens": max_tokens,
"temperature": temperature,
"top_p": top_p,
"frequency_penalty": frequency_penalty,
}
if seed is not None:
parameters["seed"] = seed
# Use the InferenceClient for making the request
try:
# Create a generator for the streaming response
stream = client.chat_completion(
model=model_to_use,
messages=messages,
stream=True,
**parameters
)
print("Received tokens: ", end="", flush=True)
# Process the streaming response
for chunk in stream:
if hasattr(chunk, 'choices') and len(chunk.choices) > 0:
# Extract the content from the response
if hasattr(chunk.choices[0], 'delta') and hasattr(chunk.choices[0].delta, 'content'):
token_text = chunk.choices[0].delta.content
if token_text:
print(token_text, end="", flush=True)
response += token_text
yield response
print()
except Exception as e:
print(f"Error during inference: {e}")
response += f"\nError: {str(e)}"
yield response
print("Completed response generation.")
# Function to validate provider selection based on BYOK
def validate_provider(api_key, provider):
if not api_key.strip() and provider != "hf-inference":
return gr.update(value="hf-inference")
return gr.update(value=provider)
# GRADIO UI
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
# Create the chatbot component
chatbot = gr.Chatbot(
height=600,
show_copy_button=True,
placeholder="Select a model and begin chatting. Now supports multiple inference providers and multimodal inputs",
layout="panel"
)
print("Chatbot interface created.")
# Multimodal textbox for messages (combines text and file uploads)
msg = gr.MultimodalTextbox(
placeholder="Type a message or upload images...",
show_label=False,
container=False,
scale=12,
file_types=["image"],
file_count="multiple",
sources=["upload"]
)
# Note: We're removing the separate submit button since MultimodalTextbox has its own
# Create accordion for settings
with gr.Accordion("Settings", open=False):
# System message
system_message_box = gr.Textbox(
value="You are a helpful AI assistant that can understand images and text.",
placeholder="You are a helpful assistant.",
label="System Prompt"
)
# Generation parameters
with gr.Row():
with gr.Column():
max_tokens_slider = gr.Slider(
minimum=1,
maximum=4096,
value=512,
step=1,
label="Max tokens"
)
temperature_slider = gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.7,
step=0.1,
label="Temperature"
)
top_p_slider = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-P"
)
with gr.Column():
frequency_penalty_slider = gr.Slider(
minimum=-2.0,
maximum=2.0,
value=0.0,
step=0.1,
label="Frequency Penalty"
)
seed_slider = gr.Slider(
minimum=-1,
maximum=65535,
value=-1,
step=1,
label="Seed (-1 for random)"
)
# Provider selection
providers_list = [
"hf-inference", # Default Hugging Face Inference
"cerebras", # Cerebras provider
"together", # Together AI
"sambanova", # SambaNova
"novita", # Novita AI
"cohere", # Cohere
"fireworks-ai", # Fireworks AI
"hyperbolic", # Hyperbolic
"nebius", # Nebius
]
provider_radio = gr.Radio(
choices=providers_list,
value="hf-inference",
label="Inference Provider",
)
# New BYOK textbox
byok_textbox = gr.Textbox(
value="",
label="BYOK (Bring Your Own Key)",
info="Enter a custom Hugging Face API key here. When empty, only 'hf-inference' provider can be used.",
placeholder="Enter your Hugging Face API token",
type="password" # Hide the API key for security
)
# Custom model box
custom_model_box = gr.Textbox(
value="",
label="Custom Model",
info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model.",
placeholder="meta-llama/Llama-3.3-70B-Instruct"
)
# Model search
model_search_box = gr.Textbox(
label="Filter Models",
placeholder="Search for a featured model...",
lines=1
)
# Featured models list
# Updated to include multimodal models
models_list = [
"meta-llama/Llama-3.2-11B-Vision-Instruct",
"meta-llama/Llama-3.3-70B-Instruct",
"meta-llama/Llama-3.1-70B-Instruct",
"meta-llama/Llama-3.0-70B-Instruct",
"meta-llama/Llama-3.2-3B-Instruct",
"meta-llama/Llama-3.2-1B-Instruct",
"meta-llama/Llama-3.1-8B-Instruct",
"NousResearch/Hermes-3-Llama-3.1-8B",
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
"mistralai/Mistral-Nemo-Instruct-2407",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"mistralai/Mistral-7B-Instruct-v0.3",
"mistralai/Mistral-7B-Instruct-v0.2",
"Qwen/Qwen3-235B-A22B",
"Qwen/Qwen3-32B",
"Qwen/Qwen2.5-72B-Instruct",
"Qwen/Qwen2.5-3B-Instruct",
"Qwen/Qwen2.5-0.5B-Instruct",
"Qwen/QwQ-32B",
"Qwen/Qwen2.5-Coder-32B-Instruct",
"microsoft/Phi-3.5-mini-instruct",
"microsoft/Phi-3-mini-128k-instruct",
"microsoft/Phi-3-mini-4k-instruct",
]
featured_model_radio = gr.Radio(
label="Select a model below",
choices=models_list,
value="meta-llama/Llama-3.2-11B-Vision-Instruct", # Default to a multimodal model
interactive=True
)
gr.Markdown("[View all Text-to-Text models](https://huggingface.co/models?inference_provider=all&pipeline_tag=text-generation&sort=trending) | [View all multimodal models](https://huggingface.co/models?inference_provider=all&pipeline_tag=image-text-to-text&sort=trending)")
# Chat history state
chat_history = gr.State([])
# Function to filter models
def filter_models(search_term):
print(f"Filtering models with search term: {search_term}")
filtered = [m for m in models_list if search_term.lower() in m.lower()]
print(f"Filtered models: {filtered}")
return gr.update(choices=filtered)
# Function to set custom model from radio
def set_custom_model_from_radio(selected):
print(f"Featured model selected: {selected}")
return selected
# Function for the chat interface
def user(user_message, history):
# Debug logging for troubleshooting
print(f"User message received: {user_message}")
# Skip if message is empty (no text and no files)
if not user_message or (not user_message.get("text") and not user_message.get("files")):
print("Empty message, skipping")
return history
# Prepare multimodal message format
text_content = user_message.get("text", "").strip()
files = user_message.get("files", [])
print(f"Text content: {text_content}")
print(f"Files: {files}")
# If both text and files are empty, skip
if not text_content and not files:
print("No content to display")
return history
# Add message with images to history
if files and len(files) > 0:
# Add text message first if it exists
if text_content:
# Add a separate text message
print(f"Adding text message: {text_content}")
history.append([text_content, None])
# Then add each image file separately
for file_path in files:
if file_path and isinstance(file_path, str):
print(f"Adding image: {file_path}")
# Add image as a separate message with no text
history.append([f"", None])
return history
else:
# For text-only messages
print(f"Adding text-only message: {text_content}")
history.append([text_content, None])
return history
# Define bot response function
def bot(history, system_msg, max_tokens, temperature, top_p, freq_penalty, seed, provider, api_key, custom_model, search_term, selected_model):
# Check if history is valid
if not history or len(history) == 0:
print("No history to process")
return history
# Get the most recent message and detect if it's an image
user_message = history[-1][0]
print(f"Processing user message: {user_message}")
is_image = False
image_path = None
text_content = user_message
# Check if this is an image message (marked with ![Image])
if isinstance(user_message, str) and user_message.startswith(":
is_image = True
# Extract image path from markdown format 
image_path = user_message.replace(".replace(")", "")
print(f"Image detected: {image_path}")
text_content = "" # No text for image-only messages
# Look back for text context if this is an image
text_context = ""
if is_image and len(history) > 1:
# Use the previous message as context if it's text
prev_message = history[-2][0]
if isinstance(prev_message, str) and not prev_message.startswith(":
text_context = prev_message
print(f"Using text context from previous message: {text_context}")
# Process message through respond function
history[-1][1] = ""
# Use either the image or text for the API
if is_image:
# For image messages
for response in respond(
text_context, # Text context from previous message if any
[image_path], # Current image
history[:-1], # Previous history
system_msg,
max_tokens,
temperature,
top_p,
freq_penalty,
seed,
provider,
api_key,
custom_model,
search_term,
selected_model
):
history[-1][1] = response
yield history
else:
# For text-only messages
for response in respond(
text_content, # Text message
None, # No image
history[:-1], # Previous history
system_msg,
max_tokens,
temperature,
top_p,
freq_penalty,
seed,
provider,
api_key,
custom_model,
search_term,
selected_model
):
history[-1][1] = response
yield history
# Event handlers - only using the MultimodalTextbox's built-in submit functionality
msg.submit(
user,
[msg, chatbot],
[chatbot],
queue=False
).then(
bot,
[chatbot, system_message_box, max_tokens_slider, temperature_slider, top_p_slider,
frequency_penalty_slider, seed_slider, provider_radio, byok_textbox, custom_model_box,
model_search_box, featured_model_radio],
[chatbot]
).then(
lambda: {"text": "", "files": []}, # Clear inputs after submission
None,
[msg]
)
# Connect the model filter to update the radio choices
model_search_box.change(
fn=filter_models,
inputs=model_search_box,
outputs=featured_model_radio
)
print("Model search box change event linked.")
# Connect the featured model radio to update the custom model box
featured_model_radio.change(
fn=set_custom_model_from_radio,
inputs=featured_model_radio,
outputs=custom_model_box
)
print("Featured model radio button change event linked.")
# Connect the BYOK textbox to validate provider selection
byok_textbox.change(
fn=validate_provider,
inputs=[byok_textbox, provider_radio],
outputs=provider_radio
)
print("BYOK textbox change event linked.")
# Also validate provider when the radio changes to ensure consistency
provider_radio.change(
fn=validate_provider,
inputs=[byok_textbox, provider_radio],
outputs=provider_radio
)
print("Provider radio button change event linked.")
print("Gradio interface initialized.")
if __name__ == "__main__":
print("Launching the demo application.")
demo.launch(show_api=True) |