Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -16,7 +16,9 @@ def respond(
|
|
16 |
frequency_penalty,
|
17 |
seed,
|
18 |
custom_model,
|
19 |
-
provider #
|
|
|
|
|
20 |
):
|
21 |
print(f"Received message: {message}")
|
22 |
print(f"History: {history}")
|
@@ -25,6 +27,8 @@ def respond(
|
|
25 |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
|
26 |
print(f"Selected model (custom_model): {custom_model}")
|
27 |
print(f"Selected provider: {provider}")
|
|
|
|
|
28 |
|
29 |
# Initialize the Inference Client with the provider
|
30 |
# Provider is specified during initialization, not in the method call
|
@@ -54,8 +58,8 @@ def respond(
|
|
54 |
messages.append({"role": "user", "content": message})
|
55 |
print("Latest user message appended.")
|
56 |
|
57 |
-
#
|
58 |
-
model_to_use = custom_model.strip() if custom_model.strip() != "" else
|
59 |
print(f"Model selected for inference: {model_to_use}")
|
60 |
|
61 |
# Start with an empty string to build the response as tokens stream in
|
@@ -106,6 +110,7 @@ def respond(
|
|
106 |
chatbot = gr.Chatbot(height=600, show_copy_button=True, placeholder="Select a model and begin chatting", layout="panel")
|
107 |
print("Chatbot interface created.")
|
108 |
|
|
|
109 |
system_message_box = gr.Textbox(value="", placeholder="You are a helpful assistant.", label="System Prompt")
|
110 |
|
111 |
max_tokens_slider = gr.Slider(
|
@@ -113,7 +118,7 @@ max_tokens_slider = gr.Slider(
|
|
113 |
maximum=4096,
|
114 |
value=512,
|
115 |
step=1,
|
116 |
-
label="Max
|
117 |
)
|
118 |
temperature_slider = gr.Slider(
|
119 |
minimum=0.1,
|
@@ -144,7 +149,7 @@ seed_slider = gr.Slider(
|
|
144 |
label="Seed (-1 for random)"
|
145 |
)
|
146 |
|
147 |
-
#
|
148 |
custom_model_box = gr.Textbox(
|
149 |
value="",
|
150 |
label="Custom Model",
|
@@ -152,7 +157,7 @@ custom_model_box = gr.Textbox(
|
|
152 |
placeholder="meta-llama/Llama-3.3-70B-Instruct"
|
153 |
)
|
154 |
|
155 |
-
#
|
156 |
providers_list = [
|
157 |
"hf-inference", # Default Hugging Face Inference
|
158 |
"cerebras", # Cerebras provider
|
@@ -169,7 +174,6 @@ providers_list = [
|
|
169 |
"openai" # OpenAI compatible endpoints
|
170 |
]
|
171 |
|
172 |
-
# Provider selection dropdown for better UX with many options
|
173 |
provider_dropdown = gr.Dropdown(
|
174 |
choices=providers_list,
|
175 |
value="hf-inference",
|
@@ -177,6 +181,57 @@ provider_dropdown = gr.Dropdown(
|
|
177 |
info="Select which inference provider to use. Uses your Hugging Face PRO credits."
|
178 |
)
|
179 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
def set_custom_model_from_radio(selected):
|
181 |
"""
|
182 |
This function will get triggered whenever someone picks a model from the 'Featured Models' radio.
|
@@ -185,6 +240,7 @@ def set_custom_model_from_radio(selected):
|
|
185 |
print(f"Featured model selected: {selected}")
|
186 |
return selected
|
187 |
|
|
|
188 |
demo = gr.ChatInterface(
|
189 |
fn=respond,
|
190 |
additional_inputs=[
|
@@ -195,7 +251,9 @@ demo = gr.ChatInterface(
|
|
195 |
frequency_penalty_slider,
|
196 |
seed_slider,
|
197 |
custom_model_box,
|
198 |
-
provider_dropdown,
|
|
|
|
|
199 |
],
|
200 |
fill_height=True,
|
201 |
chatbot=chatbot,
|
@@ -204,102 +262,21 @@ demo = gr.ChatInterface(
|
|
204 |
print("ChatInterface object created.")
|
205 |
|
206 |
with demo:
|
207 |
-
#
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
### Provider Information
|
215 |
-
|
216 |
-
- **hf-inference**: Default Hugging Face Inference API
|
217 |
-
- **cerebras**: Cerebras AI models - extremely fast inference (70x faster than GPUs)
|
218 |
-
- **together**: Together AI models
|
219 |
-
- **sambanova**: SambaNova models
|
220 |
-
- **replicate**: Replicate models
|
221 |
-
- **fal-ai**: Fal.ai models
|
222 |
-
- **novita**: Novita AI
|
223 |
-
- **black-forest-labs**: Black Forest Labs
|
224 |
-
- **cohere**: Cohere models
|
225 |
-
- **fireworks-ai**: Fireworks AI
|
226 |
-
- **hyperbolic**: Hyperbolic models
|
227 |
-
- **nebius**: Nebius models
|
228 |
-
- **openai**: OpenAI compatible endpoints
|
229 |
-
|
230 |
-
As a PRO user, you receive $2 of credits monthly across all providers.
|
231 |
-
|
232 |
-
Note: Not all models are available on all providers. If you select a provider that doesn't support your chosen model, you'll get an error message.
|
233 |
-
""")
|
234 |
-
|
235 |
-
# Model selection components moved from the removed accordion
|
236 |
-
gr.Markdown("### Model Selection")
|
237 |
-
model_search_box = gr.Textbox(
|
238 |
-
label="Filter Models",
|
239 |
-
placeholder="Search for a featured model...",
|
240 |
-
lines=1
|
241 |
-
)
|
242 |
-
print("Model search box created.")
|
243 |
-
|
244 |
-
models_list = [
|
245 |
-
"meta-llama/Llama-3.3-70B-Instruct",
|
246 |
-
"meta-llama/Llama-3.1-70B-Instruct",
|
247 |
-
"meta-llama/Llama-3.0-70B-Instruct",
|
248 |
-
"meta-llama/Llama-3.2-3B-Instruct",
|
249 |
-
"meta-llama/Llama-3.2-1B-Instruct",
|
250 |
-
"meta-llama/Llama-3.1-8B-Instruct",
|
251 |
-
"NousResearch/Hermes-3-Llama-3.1-8B",
|
252 |
-
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
|
253 |
-
"mistralai/Mistral-Nemo-Instruct-2407",
|
254 |
-
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
255 |
-
"mistralai/Mistral-7B-Instruct-v0.3",
|
256 |
-
"mistralai/Mistral-7B-Instruct-v0.2",
|
257 |
-
"Qwen/Qwen3-235B-A22B",
|
258 |
-
"Qwen/Qwen3-32B",
|
259 |
-
"Qwen/Qwen2.5-72B-Instruct",
|
260 |
-
"Qwen/Qwen2.5-3B-Instruct",
|
261 |
-
"Qwen/Qwen2.5-0.5B-Instruct",
|
262 |
-
"Qwen/QwQ-32B",
|
263 |
-
"Qwen/Qwen2.5-Coder-32B-Instruct",
|
264 |
-
"microsoft/Phi-3.5-mini-instruct",
|
265 |
-
"microsoft/Phi-3-mini-128k-instruct",
|
266 |
-
"microsoft/Phi-3-mini-4k-instruct",
|
267 |
-
"deepseek-ai/DeepSeek-R1-Distill-Qwen-32B",
|
268 |
-
"deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
|
269 |
-
"HuggingFaceH4/zephyr-7b-beta",
|
270 |
-
"HuggingFaceTB/SmolLM2-360M-Instruct",
|
271 |
-
"tiiuae/falcon-7b-instruct",
|
272 |
-
"01-ai/Yi-1.5-34B-Chat",
|
273 |
-
]
|
274 |
-
print("Models list initialized.")
|
275 |
-
|
276 |
-
featured_model_radio = gr.Radio(
|
277 |
-
label="Select a model below",
|
278 |
-
choices=models_list,
|
279 |
-
value="meta-llama/Llama-3.3-70B-Instruct",
|
280 |
-
interactive=True
|
281 |
-
)
|
282 |
-
print("Featured models radio button created.")
|
283 |
-
|
284 |
-
def filter_models(search_term):
|
285 |
-
print(f"Filtering models with search term: {search_term}")
|
286 |
-
filtered = [m for m in models_list if search_term.lower() in m.lower()]
|
287 |
-
print(f"Filtered models: {filtered}")
|
288 |
-
return gr.update(choices=filtered)
|
289 |
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
featured_model_radio.change(
|
298 |
-
fn=set_custom_model_from_radio,
|
299 |
-
inputs=featured_model_radio,
|
300 |
-
outputs=custom_model_box
|
301 |
-
)
|
302 |
-
print("Featured model radio button change event linked.")
|
303 |
|
304 |
print("Gradio interface initialized.")
|
305 |
|
|
|
16 |
frequency_penalty,
|
17 |
seed,
|
18 |
custom_model,
|
19 |
+
provider, # Provider selection
|
20 |
+
model_search_term, # For filtering models
|
21 |
+
selected_model # From radio button selection
|
22 |
):
|
23 |
print(f"Received message: {message}")
|
24 |
print(f"History: {history}")
|
|
|
27 |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
|
28 |
print(f"Selected model (custom_model): {custom_model}")
|
29 |
print(f"Selected provider: {provider}")
|
30 |
+
print(f"Model search term: {model_search_term}")
|
31 |
+
print(f"Selected model from radio: {selected_model}")
|
32 |
|
33 |
# Initialize the Inference Client with the provider
|
34 |
# Provider is specified during initialization, not in the method call
|
|
|
58 |
messages.append({"role": "user", "content": message})
|
59 |
print("Latest user message appended.")
|
60 |
|
61 |
+
# Determine which model to use, prioritizing custom_model if provided
|
62 |
+
model_to_use = custom_model.strip() if custom_model.strip() != "" else selected_model
|
63 |
print(f"Model selected for inference: {model_to_use}")
|
64 |
|
65 |
# Start with an empty string to build the response as tokens stream in
|
|
|
110 |
chatbot = gr.Chatbot(height=600, show_copy_button=True, placeholder="Select a model and begin chatting", layout="panel")
|
111 |
print("Chatbot interface created.")
|
112 |
|
113 |
+
# Basic input components
|
114 |
system_message_box = gr.Textbox(value="", placeholder="You are a helpful assistant.", label="System Prompt")
|
115 |
|
116 |
max_tokens_slider = gr.Slider(
|
|
|
118 |
maximum=4096,
|
119 |
value=512,
|
120 |
step=1,
|
121 |
+
label="Max tokens"
|
122 |
)
|
123 |
temperature_slider = gr.Slider(
|
124 |
minimum=0.1,
|
|
|
149 |
label="Seed (-1 for random)"
|
150 |
)
|
151 |
|
152 |
+
# Custom model box
|
153 |
custom_model_box = gr.Textbox(
|
154 |
value="",
|
155 |
label="Custom Model",
|
|
|
157 |
placeholder="meta-llama/Llama-3.3-70B-Instruct"
|
158 |
)
|
159 |
|
160 |
+
# Provider selection
|
161 |
providers_list = [
|
162 |
"hf-inference", # Default Hugging Face Inference
|
163 |
"cerebras", # Cerebras provider
|
|
|
174 |
"openai" # OpenAI compatible endpoints
|
175 |
]
|
176 |
|
|
|
177 |
provider_dropdown = gr.Dropdown(
|
178 |
choices=providers_list,
|
179 |
value="hf-inference",
|
|
|
181 |
info="Select which inference provider to use. Uses your Hugging Face PRO credits."
|
182 |
)
|
183 |
|
184 |
+
# Model selection components
|
185 |
+
model_search_box = gr.Textbox(
|
186 |
+
label="Filter Models",
|
187 |
+
placeholder="Search for a featured model...",
|
188 |
+
lines=1
|
189 |
+
)
|
190 |
+
|
191 |
+
models_list = [
|
192 |
+
"meta-llama/Llama-3.3-70B-Instruct",
|
193 |
+
"meta-llama/Llama-3.1-70B-Instruct",
|
194 |
+
"meta-llama/Llama-3.0-70B-Instruct",
|
195 |
+
"meta-llama/Llama-3.2-3B-Instruct",
|
196 |
+
"meta-llama/Llama-3.2-1B-Instruct",
|
197 |
+
"meta-llama/Llama-3.1-8B-Instruct",
|
198 |
+
"NousResearch/Hermes-3-Llama-3.1-8B",
|
199 |
+
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
|
200 |
+
"mistralai/Mistral-Nemo-Instruct-2407",
|
201 |
+
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
202 |
+
"mistralai/Mistral-7B-Instruct-v0.3",
|
203 |
+
"mistralai/Mistral-7B-Instruct-v0.2",
|
204 |
+
"Qwen/Qwen3-235B-A22B",
|
205 |
+
"Qwen/Qwen3-32B",
|
206 |
+
"Qwen/Qwen2.5-72B-Instruct",
|
207 |
+
"Qwen/Qwen2.5-3B-Instruct",
|
208 |
+
"Qwen/Qwen2.5-0.5B-Instruct",
|
209 |
+
"Qwen/QwQ-32B",
|
210 |
+
"Qwen/Qwen2.5-Coder-32B-Instruct",
|
211 |
+
"microsoft/Phi-3.5-mini-instruct",
|
212 |
+
"microsoft/Phi-3-mini-128k-instruct",
|
213 |
+
"microsoft/Phi-3-mini-4k-instruct",
|
214 |
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-32B",
|
215 |
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
|
216 |
+
"HuggingFaceH4/zephyr-7b-beta",
|
217 |
+
"HuggingFaceTB/SmolLM2-360M-Instruct",
|
218 |
+
"tiiuae/falcon-7b-instruct",
|
219 |
+
"01-ai/Yi-1.5-34B-Chat",
|
220 |
+
]
|
221 |
+
|
222 |
+
featured_model_radio = gr.Radio(
|
223 |
+
label="Select a model below",
|
224 |
+
choices=models_list,
|
225 |
+
value="meta-llama/Llama-3.3-70B-Instruct",
|
226 |
+
interactive=True
|
227 |
+
)
|
228 |
+
|
229 |
+
def filter_models(search_term):
|
230 |
+
print(f"Filtering models with search term: {search_term}")
|
231 |
+
filtered = [m for m in models_list if search_term.lower() in m.lower()]
|
232 |
+
print(f"Filtered models: {filtered}")
|
233 |
+
return gr.update(choices=filtered)
|
234 |
+
|
235 |
def set_custom_model_from_radio(selected):
|
236 |
"""
|
237 |
This function will get triggered whenever someone picks a model from the 'Featured Models' radio.
|
|
|
240 |
print(f"Featured model selected: {selected}")
|
241 |
return selected
|
242 |
|
243 |
+
# Create the Gradio interface
|
244 |
demo = gr.ChatInterface(
|
245 |
fn=respond,
|
246 |
additional_inputs=[
|
|
|
251 |
frequency_penalty_slider,
|
252 |
seed_slider,
|
253 |
custom_model_box,
|
254 |
+
provider_dropdown, # Provider selection
|
255 |
+
model_search_box, # Model search box
|
256 |
+
featured_model_radio # Featured model radio
|
257 |
],
|
258 |
fill_height=True,
|
259 |
chatbot=chatbot,
|
|
|
262 |
print("ChatInterface object created.")
|
263 |
|
264 |
with demo:
|
265 |
+
# Connect the model filter to update the radio choices
|
266 |
+
model_search_box.change(
|
267 |
+
fn=filter_models,
|
268 |
+
inputs=model_search_box,
|
269 |
+
outputs=featured_model_radio
|
270 |
+
)
|
271 |
+
print("Model search box change event linked.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
272 |
|
273 |
+
# Connect the featured model radio to update the custom model box
|
274 |
+
featured_model_radio.change(
|
275 |
+
fn=set_custom_model_from_radio,
|
276 |
+
inputs=featured_model_radio,
|
277 |
+
outputs=custom_model_box
|
278 |
+
)
|
279 |
+
print("Featured model radio button change event linked.")
|
|
|
|
|
|
|
|
|
|
|
|
|
280 |
|
281 |
print("Gradio interface initialized.")
|
282 |
|