File size: 40,188 Bytes
f4462c5
c730636
adf895d
4add2a4
f4462c5
c730636
 
 
 
 
 
aa2cd6e
 
c730636
cbbe438
c730636
 
 
 
 
 
 
aa2cd6e
 
12e0f66
c730636
f4462c5
 
 
 
 
 
 
 
 
 
 
 
c730636
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbbe438
 
 
 
 
 
 
c730636
 
8ef3df1
c730636
 
8ef3df1
760137e
 
 
 
 
 
 
8ef3df1
 
 
 
 
 
 
c730636
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63e7ff5
c730636
 
adf895d
cbbe438
 
 
 
 
 
c730636
 
8ef3df1
c730636
 
8ef3df1
760137e
 
 
 
 
 
8ef3df1
 
 
 
c730636
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63e7ff5
c730636
 
cbbe438
c730636
8ef3df1
 
 
760137e
8ef3df1
 
 
 
c730636
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4462c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d265e96
f4462c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c730636
f4462c5
c730636
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c92323a
1e55af1
c92323a
c730636
 
 
 
 
 
 
 
 
 
 
adf895d
c730636
 
 
 
 
 
 
 
 
adf895d
c92323a
1e55af1
c92323a
c730636
 
 
 
 
 
 
 
 
63e7ff5
c730636
 
 
 
 
 
 
c92323a
1e55af1
c92323a
8d5ec93
 
 
 
 
 
 
c730636
 
 
f4462c5
c92323a
 
 
20e04a8
 
12e0f66
a38cce7
 
 
 
 
 
20e04a8
 
f4462c5
20e04a8
 
f4462c5
 
 
 
d265e96
f4462c5
 
 
 
 
 
 
 
63e7ff5
f4462c5
 
20e2687
 
 
f4462c5
 
 
 
aa2cd6e
cd28068
aa2cd6e
 
 
 
 
d265e96
aa2cd6e
cd28068
aa2cd6e
 
 
 
 
 
 
 
 
 
 
 
 
cd28068
 
 
aa2cd6e
 
 
 
 
 
 
 
21ba6d1
aa2cd6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd28068
aa2cd6e
 
 
 
 
 
 
 
 
 
 
 
 
 
cd28068
aa2cd6e
 
 
 
 
 
 
cd28068
d265e96
aa2cd6e
 
cd28068
aa2cd6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd28068
aa2cd6e
cd28068
20e2687
aa2cd6e
 
cd28068
 
21ba6d1
20e2687
aa2cd6e
 
 
 
12e0f66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd28068
f4462c5
12e0f66
 
 
 
 
 
 
 
f4462c5
 
 
 
 
cd28068
12e0f66
f4462c5
 
 
 
c730636
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
# Purpose: One Space that offers four tools/tabs (all exposed as MCP tools):
#   1) Fetch — extract relevant page content (title, metadata, clean text, hyperlinks)
#   2) DuckDuckGo Search — compact JSONL search output (short keys to minimize tokens)
#   3) Python Code Executor — run Python code and capture stdout/errors
#   4) Kokoro TTS — synthesize speech from text using Kokoro-82M

from __future__ import annotations

import re
import json
import sys
import os
import random
from io import StringIO
from typing import List, Dict, Tuple, Annotated

import gradio as gr
import requests
from bs4 import BeautifulSoup
from readability import Document
from urllib.parse import urljoin, urldefrag, urlparse
from duckduckgo_search import DDGS
from PIL import Image
from huggingface_hub import InferenceClient
import time

# Optional imports for Kokoro TTS (loaded lazily)
import numpy as np
try:
    import torch  # type: ignore
except Exception:  # pragma: no cover - optional dependency
    torch = None  # type: ignore
try:
    from kokoro import KModel, KPipeline  # type: ignore
except Exception:  # pragma: no cover - optional dependency
    KModel = None  # type: ignore
    KPipeline = None  # type: ignore


# ==============================
# Fetch: HTTP + extraction utils
# ==============================

def _http_get(url: str) -> requests.Response:
    """
    Download the page politely with a short timeout and realistic headers.
    (Layman's terms: grab the web page like a normal browser would, but quickly.)
    """
    headers = {
        "User-Agent": "Mozilla/5.0 (compatible; WebMCP/1.0; +https://example.com)",
        "Accept-Language": "en-US,en;q=0.9",
        "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8",
    }
    return requests.get(url, headers=headers, timeout=15)


def _normalize_whitespace(text: str) -> str:
    """
    Squeeze extra spaces and blank lines to keep things compact.
    (Layman's terms: tidy up the text so it’s not full of weird spacing.)
    """
    text = re.sub(r"[ \t\u00A0]+", " ", text)
    text = re.sub(r"\n\s*\n\s*\n+", "\n\n", text.strip())
    return text.strip()


def _truncate(text: str, max_chars: int) -> Tuple[str, bool]:
    """
    Cut text if it gets too long; return the text and whether we trimmed.
    (Layman's terms: shorten long text and tell us if we had to cut it.)
    """
    if max_chars is None or max_chars <= 0 or len(text) <= max_chars:
        return text, False
    return text[:max_chars].rstrip() + " …", True


def _shorten(text: str, limit: int) -> str:
    """
    Hard cap a string with an ellipsis to keep tokens small.
    (Layman's terms: force a string to a max length with an ellipsis.)
    """
    if limit <= 0 or len(text) <= limit:
        return text
    return text[: max(0, limit - 1)].rstrip() + "…"


def _domain_of(url: str) -> str:
    """
    Show a friendly site name like "example.com".
    (Layman's terms: pull the website's domain.)
    """
    try:
        return urlparse(url).netloc or ""
    except Exception:
        return ""


def _meta(soup: BeautifulSoup, name: str) -> str | None:
    tag = soup.find("meta", attrs={"name": name})
    return tag.get("content") if tag and tag.has_attr("content") else None


def _og(soup: BeautifulSoup, prop: str) -> str | None:
    tag = soup.find("meta", attrs={"property": prop})
    return tag.get("content") if tag and tag.has_attr("content") else None


def _extract_metadata(soup: BeautifulSoup, final_url: str) -> Dict[str, str]:
    """
    Pull the useful bits: title, description, site name, canonical URL, language, etc.
    (Layman's terms: gather page basics like title/description/address.)
    """
    meta: Dict[str, str] = {}

    # Title preference: <title> > og:title > twitter:title
    title_candidates = [
        (soup.title.string if soup.title and soup.title.string else None),
        _og(soup, "og:title"),
        _meta(soup, "twitter:title"),
    ]
    meta["title"] = next((t.strip() for t in title_candidates if t and t.strip()), "")

    # Description preference: description > og:description > twitter:description
    desc_candidates = [
        _meta(soup, "description"),
        _og(soup, "og:description"),
        _meta(soup, "twitter:description"),
    ]
    meta["description"] = next((d.strip() for d in desc_candidates if d and d.strip()), "")

    # Canonical link (helps dedupe)
    link_canonical = soup.find("link", rel=lambda v: v and "canonical" in v)
    meta["canonical"] = (link_canonical.get("href") or "").strip() if link_canonical else ""

    # Site name + language info if present
    meta["site_name"] = (_og(soup, "og:site_name") or "").strip()
    html_tag = soup.find("html")
    meta["lang"] = (html_tag.get("lang") or "").strip() if html_tag else ""

    # Final URL + domain
    meta["fetched_url"] = final_url
    meta["domain"] = _domain_of(final_url)

    return meta


def _extract_main_text(html: str) -> Tuple[str, BeautifulSoup]:
    """
    Use Readability to isolate the main article and turn it into clean text.
    Returns (clean_text, soup_of_readable_html).
    (Layman's terms: find the real article text and clean it.)
    """
    # Simplified article HTML from Readability
    doc = Document(html)
    readable_html = doc.summary(html_partial=True)

    # Parse simplified HTML
    s = BeautifulSoup(readable_html, "lxml")

    # Remove noisy tags
    for sel in ["script", "style", "noscript", "iframe", "svg"]:
        for tag in s.select(sel):
            tag.decompose()

    # Keep paragraphs, list items, and subheadings for structure without bloat
    text_parts: List[str] = []
    for p in s.find_all(["p", "li", "h2", "h3", "h4", "blockquote"]):
        chunk = p.get_text(" ", strip=True)
        if chunk:
            text_parts.append(chunk)

    clean_text = _normalize_whitespace("\n\n".join(text_parts))
    return clean_text, s


def _extract_links(readable_soup: BeautifulSoup, base_url: str, max_links: int) -> List[Tuple[str, str]]:
    """
    Collect clean, unique, absolute links from the readable section only.
    (Layman's terms: pull a tidy list of links from the article body.)
    """
    seen = set()
    links: List[Tuple[str, str]] = []

    for a in readable_soup.find_all("a", href=True):
        href = a.get("href").strip()
        # Skip junk links we can't use
        if not href or href.startswith("#") or href.startswith("mailto:") or href.startswith("javascript:"):
            continue

        # Resolve relative URLs, strip fragments (#…)
        absolute = urljoin(base_url, href)
        absolute, _ = urldefrag(absolute)

        if absolute in seen:
            continue
        seen.add(absolute)

        text = a.get_text(" ", strip=True)
        if len(text) > 120:
            text = text[:117] + "…"

        links.append((text or absolute, absolute))

        if len(links) >= max_links > 0:
            break

    return links


def _format_markdown(
    meta: Dict[str, str],
    body: str,
    body_truncated: bool,
    links: List[Tuple[str, str]],
    include_text: bool,
    include_metadata: bool,
    include_links: bool,
    verbosity: str,
) -> str:
    """
    Assemble a compact Markdown summary with optional sections.
    (Layman's terms: build the final markdown output with options.)
    """
    lines: List[str] = []

    # Title header
    title = meta.get("title") or meta.get("domain") or "Untitled"
    lines.append(f"# {title}")

    # Metadata section (only show what exists)
    if include_metadata:
        md: List[str] = []
        if meta.get("description"):
            md.append(f"- **Description:** {meta['description']}")
        if meta.get("site_name"):
            md.append(f"- **Site:** {meta['site_name']}")
        if meta.get("canonical"):
            md.append(f"- **Canonical:** {meta['canonical']}")
        if meta.get("lang"):
            md.append(f"- **Language:** {meta['lang']}")
        if meta.get("fetched_url"):
            md.append(f"- **Fetched From:** {meta['fetched_url']}")
        if md:
            lines.append("## Metadata")
            lines.extend(md)

    # Body text
    if include_text and body:
        if verbosity == "Brief":
            brief, was_more = _truncate(body, 800)
            lines.append("## Text")
            lines.append(brief)
            if was_more or body_truncated:
                lines.append("\n> (Trimmed for brevity)")
        else:
            lines.append("## Text")
            lines.append(body)
            if body_truncated:
                lines.append("\n> (Trimmed for brevity)")

    # Links section
    if include_links and links:
        lines.append(f"## Links ({len(links)})")
        for text, url in links:
            lines.append(f"- [{text}]({url})")

    return "\n\n".join(lines).strip()


def Fetch_Webpage(  # <-- MCP tool #1 (Fetch)
    url: Annotated[str, "The absolute URL to fetch (must return HTML)."] ,
    verbosity: Annotated[str, "Controls body length: one of 'Brief', 'Standard', or 'Full'."] = "Standard",
    include_metadata: Annotated[bool, "Include a Metadata section (description, site name, canonical, lang, fetched URL)."] = True,
    include_text: Annotated[bool, "Include the readable main text extracted with Readability."] = True,
    include_links: Annotated[bool, "Include outbound links discovered in the readable section."] = True,
    max_chars: Annotated[int, "Hard cap for body characters after the verbosity preset. Use 0 to disable the cap."] = 3000,
    max_links: Annotated[int, "Maximum number of links to include from the readable content. Set 0 to omit links."] = 20,
) -> str:
    """
    Fetch a web page and return a compact Markdown summary containing title, key
    metadata, readable main text, and outbound links.

    Args:
        url: The absolute URL to fetch (must return HTML).
        verbosity: Controls body length: one of 'Brief', 'Standard', or 'Full'.
        include_metadata: Include a Metadata section (description, site name, canonical, lang, fetched URL).
        include_text: Include the readable main text extracted with Readability.
        include_links: Include outbound links discovered in the readable section.
        max_chars: Hard cap for body characters after the verbosity preset. Use 0 to disable the cap.
        max_links: Maximum number of links to include from the readable content. Set 0 to omit links.

    Returns:
        str: Markdown that may contain the following sections:
            - Title (H1)
            - Metadata (optional)
            - Text (optional, may be trimmed)
            - Links (optional, deduped and absolute)
    """
    if not url or not url.strip():
        return "Please enter a valid URL."

    try:
        resp = _http_get(url)
        resp.raise_for_status()
    except requests.exceptions.RequestException as e:
        return f"An error occurred: {e}"

    final_url = str(resp.url)
    ctype = resp.headers.get("Content-Type", "")
    if "html" not in ctype.lower():
        return f"Unsupported content type for extraction: {ctype or 'unknown'}"

    # Decode to text
    resp.encoding = resp.encoding or resp.apparent_encoding
    html = resp.text

    # Full-page soup for metadata
    full_soup = BeautifulSoup(html, "lxml")
    meta = _extract_metadata(full_soup, final_url)

    # Readable content
    body_text, readable_soup = _extract_main_text(html)
    if not body_text:
        # Fallback to "whole-page text" if Readability found nothing
        fallback_text = full_soup.get_text(" ", strip=True)
        body_text = _normalize_whitespace(fallback_text)

    # Verbosity presets (we keep the smaller of preset vs. user cap)
    preset_caps = {"Brief": 1200, "Standard": 3000, "Full": 999_999}
    target_cap = preset_caps.get(verbosity, 3000)
    cap = min(max_chars if max_chars > 0 else target_cap, target_cap)
    body_text, truncated = _truncate(body_text, cap) if include_text else ("", False)

    # Extract links from the simplified content only
    links = _extract_links(readable_soup, final_url, max_links=max_links if include_links else 0)

    # Final compact Markdown
    md = _format_markdown(
        meta=meta,
        body=body_text,
        body_truncated=truncated,
        links=links,
        include_text=include_text,
        include_metadata=include_metadata,
        include_links=include_links,
        verbosity=verbosity,
    )
    return md or "No content could be extracted."


# ============================================
# DuckDuckGo Search: ultra-succinct JSONL
# ============================================

def Search_DuckDuckGo(  # <-- MCP tool #2 (DDG Search)
    query: Annotated[str, "The search query (supports operators like site:, quotes, OR)."] ,
    max_results: Annotated[int, "Number of results to return (1–20)."] = 5,
    include_snippets: Annotated[bool, "Include a short snippet for each result (adds tokens)."] = False,
    max_snippet_chars: Annotated[int, "Character cap applied to each snippet when included."] = 80,
    dedupe_domains: Annotated[bool, "If true, only the first result from each domain is kept."] = True,
    title_chars: Annotated[int, "Character cap applied to titles."] = 80,
) -> str:
    """
    Run a DuckDuckGo search and return ultra-compact JSONL with short keys to
    minimize tokens.

    Args:
        query: The search query (supports operators like site:, quotes, OR).
        max_results: Number of results to return (1–20).
        include_snippets: Include a short snippet for each result (adds tokens).
        max_snippet_chars: Character cap applied to each snippet when included.
        dedupe_domains: If true, only the first result from each domain is kept.
        title_chars: Character cap applied to titles.

    Returns:
        str: Newline-delimited JSON (JSONL). Each line has:
            {"t": "title", "u": "url"[, "s": "snippet"]}
    """
    if not query or not query.strip():
        return ""

    try:
        with DDGS() as ddgs:
            raw = ddgs.text(query, max_results=max_results)
    except Exception as e:
        return json.dumps({"error": str(e)[:120]}, ensure_ascii=False, separators=(",", ":"))

    seen_domains = set()
    lines: List[str] = []

    for r in raw or []:
        title = _shorten((r.get("title") or "").strip(), title_chars)
        url = (r.get("href") or r.get("link") or "").strip()
        body = (r.get("body") or r.get("snippet") or "").strip()

        if not url:
            continue

        if dedupe_domains:
            dom = _domain_of(url)
            if dom in seen_domains:
                continue
            seen_domains.add(dom)

        obj = {"t": title or _domain_of(url), "u": url}

        if include_snippets and body:
            obj["s"] = _shorten(body, max_snippet_chars)

        # Emit most compact JSON possible (no spaces)
        lines.append(json.dumps(obj, ensure_ascii=False, separators=(",", ":")))

    # Join as JSONL (each result on its own line)
    return "\n".join(lines)


# ======================================
# Code Execution: Python (MCP tool #3)
# ======================================

def Execute_Python(code: Annotated[str, "Python source code to run; stdout is captured and returned."]) -> str:
    """
    Execute arbitrary Python code and return captured stdout or an error message.

    Args:
        code: Python source code to run; stdout is captured and returned.

    Returns:
        str: Combined stdout produced by the code, or the exception text if
        execution failed.
    """
    if code is None:
        return "No code provided."

    old_stdout = sys.stdout
    redirected_output = sys.stdout = StringIO()
    try:
        exec(code)
        return redirected_output.getvalue()
    except Exception as e:
        return str(e)
    finally:
        sys.stdout = old_stdout


# ==========================
# Kokoro TTS (MCP tool #4)
# ==========================

_KOKORO_STATE = {
    "initialized": False,
    "device": "cpu",
    "model": None,
    "pipelines": {},
}


def _init_kokoro() -> None:
    """Lazy-initialize Kokoro model and pipelines on first use.

    Tries CUDA if torch is present and available; falls back to CPU. Keeps a
    minimal English pipeline and custom lexicon tweak for the word "kokoro".
    """
    if _KOKORO_STATE["initialized"]:
        return

    if KModel is None or KPipeline is None:
        raise RuntimeError(
            "Kokoro is not installed. Please install the 'kokoro' package (>=0.9.4)."
        )

    device = "cpu"
    if torch is not None:
        try:
            if torch.cuda.is_available():  # type: ignore[attr-defined]
                device = "cuda"
        except Exception:
            device = "cpu"

    model = KModel().to(device).eval()
    pipelines = {"a": KPipeline(lang_code="a", model=False)}
    # Custom pronunciation
    try:
        pipelines["a"].g2p.lexicon.golds["kokoro"] = "kˈOkəɹO"
    except Exception:
        pass

    _KOKORO_STATE.update(
        {
            "initialized": True,
            "device": device,
            "model": model,
            "pipelines": pipelines,
        }
    )


def Generate_Speech(  # <-- MCP tool #4 (Generate Speech)
    text: Annotated[str, "The text to synthesize (English)."],
    speed: Annotated[float, "Speech speed multiplier in 0.5–2.0; 1.0 = normal speed."] = 1.0,
    voice: Annotated[str, "Voice identifier. Example: 'af_heart' (US English, female, Heart)."] = "af_heart",
) -> Tuple[int, np.ndarray]:
    """
    Synthesize speech from text using the Kokoro-82M model.

    This function returns raw audio suitable for a Gradio Audio component and is
    also exposed as an MCP tool (per the latest Hugging Face/Gradio MCP docs, a
    tool is created for each function wired into your app; docstrings and type
    hints are used to describe the tool).

    Args:
        text: The text to synthesize (English).
        speed: Speech speed multiplier in 0.5–2.0; 1.0 = normal speed.
        voice: Voice identifier. Example: 'af_heart' (US English, female, Heart).

    Returns:
        A tuple of (sample_rate_hz, audio_waveform) where:
        - sample_rate_hz: int sample rate in Hz (24_000)
        - audio_waveform: numpy.ndarray float32 mono waveform in range [-1, 1]

    Notes:
        - Requires the 'kokoro' package (>=0.9.4). If unavailable, an error is
          raised with installation guidance.
        - Runs on CUDA if available; otherwise CPU.
    """
    if not text or not text.strip():
        raise gr.Error("Please provide non-empty text to synthesize.")

    _init_kokoro()
    model = _KOKORO_STATE["model"]
    pipelines = _KOKORO_STATE["pipelines"]

    pipeline = pipelines.get("a")
    if pipeline is None:
        raise gr.Error("Kokoro English pipeline not initialized.")

    pack = pipeline.load_voice(voice)
    # Generate using the last reference state from the current phoneme sequence
    for _, ps, _ in pipeline(text, voice, speed):
        ref_s = pack[len(ps) - 1]
        try:
            audio = model(ps, ref_s, float(speed))
        except Exception as e:  # propagate as UI-friendly error
            raise gr.Error(f"Error generating audio: {str(e)}")
        # Return 24 kHz mono waveform
        return 24_000, audio.detach().cpu().numpy()

    # If pipeline produced no segments
    raise gr.Error("No audio was generated (empty synthesis result).")


# ======================
# UI: four-tab interface
# ======================

# --- Fetch tab (compact controllable extraction) ---
fetch_interface = gr.Interface(
    fn=Fetch_Webpage,  # connect the function to the UI
    inputs=[
        gr.Textbox(label="URL", placeholder="https://example.com/article"),
        gr.Dropdown(label="Verbosity", choices=["Brief", "Standard", "Full"], value="Standard"),
        gr.Checkbox(value=True, label="Include Metadata"),
        gr.Checkbox(value=True, label="Include Main Text"),
        gr.Checkbox(value=True, label="Include Links"),
        gr.Slider(400, 12000, value=3000, step=100, label="Max Characters (body text)"),
        gr.Slider(0, 100, value=20, step=1, label="Max Links"),
    ],
    outputs=gr.Markdown(label="Extracted Summary"),
    title="Fetch Webpage",
    description=(
        "<div style=\"text-align:center\">Extract title, key metadata, readable text, and links from webpages. No noisy HTML.</div>"
    ),
    api_description=(
        "Fetch a web page and return a compact Markdown summary with title, key "
        "metadata, readable body text, and outbound links. Parameters let you "
        "control verbosity, whether to include metadata/text/links, and limits "
        "for characters and number of links."
    ),
    allow_flagging="never",
)

# --- Concise DDG tab (JSONL with short keys, minimal tokens) ---
concise_interface = gr.Interface(
    fn=Search_DuckDuckGo,
    inputs=[
        gr.Textbox(label="Query", placeholder="topic OR site:example.com"),
        gr.Slider(minimum=1, maximum=20, value=5, step=1, label="Max results"),
        gr.Checkbox(value=False, label="Include snippets (adds tokens)"),
        gr.Slider(minimum=20, maximum=200, value=80, step=5, label="Max snippet chars"),
        gr.Checkbox(value=True, label="Dedupe by domain"),
        gr.Slider(minimum=20, maximum=120, value=80, step=5, label="Max title chars"),
    ],
    outputs=gr.Textbox(label="Results (JSONL)", interactive=False),
    title="DuckDuckGo Search",
    description=(
        "<div style=\"text-align:center\">Very concise web search to avoid unnecessary context. Emits JSONL with short keys (t,u[,s]). Defaults avoid snippets and duplicate domains.</div>"
    ),
    api_description=(
        "Run a DuckDuckGo search and return newline-delimited JSON with short keys: "
        "t=title, u=url, optional s=snippet. Options control result count, "
        "snippet inclusion and length, domain deduping, and title length."
    ),
    allow_flagging="never",
    submit_btn="Search",
)

##

# --- Execute Python tab (simple code interpreter) ---
code_interface = gr.Interface(
    fn=Execute_Python,
    inputs=gr.Code(label="Python Code", language="python"),
    outputs=gr.Textbox(label="Output"),
    title="Python Code Executor",
    description=(
        "<div style=\"text-align:center\">Execute Python code and see the output.</div>"
    ),
    api_description=(
        "Execute arbitrary Python code and return captured stdout or an error message.\n\n"
        "Parameters:\n"
        "- code (string): The Python source code to run.\n\n"
        "Returns:\n"
        "- string: Combined stdout produced by the code, or the exception text if execution failed."
    ),
    allow_flagging="never",
)

CSS_STYLES = """
    .gradio-container h1 {
        text-align: center;
    }
    /* Default: add subtitle under titles */
    .gradio-container h1::after {
    content: "Fetch Webpage | Search DuckDuckGo | Code Interpreter | Kokoro TTS | Image Generation | Video Generation";
        display: block;
        font-size: 1rem;
        font-weight: 500;
        opacity: 0.9;
        margin-top: 6px;
    }

    /* But remove it inside tab panels so it doesn't duplicate under each tool title */
    .gradio-container [role=\"tabpanel\"] h1::after {
        content: none !important;
    }
"""

# --- Kokoro TTS tab (text to speech) ---
kokoro_interface = gr.Interface(
    fn=Generate_Speech,
    inputs=[
        gr.Textbox(label="Text", placeholder="Type text to synthesize…", lines=4),
        gr.Slider(minimum=0.5, maximum=2.0, value=1.0, step=0.1, label="Speed"),
        gr.Textbox(label="Voice", value="af_heart", placeholder="e.g., af_heart"),
    ],
    outputs=gr.Audio(label="Audio", type="numpy"),
    title="Kokoro TTS",
    description=(
        "<div style=\"text-align:center\">Generate English speech with Kokoro-82M. 30 second max output. Runs on CPU or CUDA if available.</div>"
    ),
    api_description=(
        "Synthesize speech from text using Kokoro-82M. Returns (sample_rate, waveform) suitable for playback. "
        "Parameters: text (str), speed (float 0.5–2.0), voice (str). "
        "Return the generated image to the user."
    ),
    allow_flagging="never",
)

# ==========================
# Image Generation (Serverless)
# ==========================

HF_API_TOKEN = os.getenv("HF_READ_TOKEN")


def Generate_Image(  # <-- MCP tool #5 (Generate Image)
    prompt: Annotated[str, "Text description of the image to generate."],
    model_id: Annotated[str, "Hugging Face model id in the form 'creator/model-name' (e.g., black-forest-labs/FLUX.1-Krea-dev)."] = "black-forest-labs/FLUX.1-Krea-dev",
    negative_prompt: Annotated[str, "What should NOT appear in the image." ] = (
        "(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, "
        "missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, "
        "mutated, ugly, disgusting, blurry, amputation, misspellings, typos"
    ),
    steps: Annotated[int, "Number of denoising steps (1–100). Higher = slower, potentially higher quality."] = 35,
    cfg_scale: Annotated[float, "Classifier-free guidance scale (1–20). Higher = follow the prompt more closely."] = 7.0,
    sampler: Annotated[str, "Sampling method label (UI only). Common options: 'DPM++ 2M Karras', 'DPM++ SDE Karras', 'Euler', 'Euler a', 'Heun', 'DDIM'."] = "DPM++ 2M Karras",
    seed: Annotated[int, "Random seed for reproducibility. Use -1 for a random seed per call."] = -1,
    width: Annotated[int, "Output width in pixels (64–1216, multiple of 32 recommended)."] = 1024,
    height: Annotated[int, "Output height in pixels (64–1216, multiple of 32 recommended)."] = 1024,
) -> Image.Image:
    """
    Generate a single image from a text prompt using a Hugging Face model via
    serverless Inference. Returns a PIL image. By default, the model is
    black-forest-labs/FLUX.1-Krea-dev.

    Notes (MCP):
    - Per the latest Gradio MCP docs, images returned from tools are handled by the server and
      converted to file URLs automatically for MCP clients. Ensure type hints and this docstring
      "Args:" block are present so the tool schema is accurate.

    Args:
        prompt (str): Text description of the image to generate.
        model_id (str): The Hugging Face model id (creator/model-name). Defaults to "black-forest-labs/FLUX.1-Krea-dev".
        negative_prompt (str): What should NOT appear in the image.
        steps (int): Number of denoising steps (1–100). Higher can improve quality.
        cfg_scale (float): Guidance scale (1–20). Higher = follow the prompt more closely.
        sampler (str): Sampling method label for UI; not all providers expose this control.
        seed (int): Random seed. Use -1 to randomize on each call.
        width (int): Output width in pixels (64–1216; multiples of 32 recommended).
        height (int): Output height in pixels (64–1216; multiples of 32 recommended).

    Returns:
        PIL.Image.Image: The generated image.

    Error modes:
        - Raises gr.Error with a user-friendly message on auth/model/load errors.
    """
    if not prompt or not prompt.strip():
        raise gr.Error("Please provide a non-empty prompt.")

    # Slightly enhance prompt for quality (kept consistent with Serverless space)
    enhanced_prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."

    # Try multiple providers for resilience
    providers = ["auto", "replicate", "fal-ai"]
    last_error: Exception | None = None

    for provider in providers:
        try:
            client = InferenceClient(api_key=HF_API_TOKEN, provider=provider)
            image = client.text_to_image(
                prompt=enhanced_prompt,
                negative_prompt=negative_prompt,
                model=model_id,
                width=width,
                height=height,
                num_inference_steps=steps,
                guidance_scale=cfg_scale,
                seed=seed if seed != -1 else random.randint(1, 1_000_000_000),
            )
            return image
        except Exception as e:  # try next provider, transform last one to friendly error
            last_error = e
            continue

    # If we reach here, all providers failed
    msg = str(last_error) if last_error else "Unknown error"
    if "404" in msg:
        raise gr.Error(f"Model not found or unavailable: {model_id}. Check the id and your HF token access.")
    if "503" in msg:
        raise gr.Error("The model is warming up. Please try again shortly.")
    if "401" in msg or "403" in msg:
        raise gr.Error("Authentication failed. Set HF_READ_TOKEN environment variable with access to the model.")
    raise gr.Error(f"Image generation failed: {msg}")


image_generation_interface = gr.Interface(
    fn=Generate_Image,
    inputs=[
        gr.Textbox(label="Prompt", placeholder="Enter a prompt", lines=2),
        gr.Textbox(label="Model", value="black-forest-labs/FLUX.1-Krea-dev", placeholder="creator/model-name"),
        gr.Textbox(
            label="Negative Prompt",
            value=(
                "(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, "
                "missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, "
                "mutated, ugly, disgusting, blurry, amputation, misspellings, typos"
            ),
            lines=2,
        ),
        gr.Slider(minimum=1, maximum=100, value=35, step=1, label="Steps"),
        gr.Slider(minimum=1.0, maximum=20.0, value=7.0, step=0.1, label="CFG Scale"),
        gr.Radio(label="Sampler", value="DPM++ 2M Karras", choices=[
            "DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"
        ]),
        gr.Slider(minimum=-1, maximum=1_000_000_000, value=-1, step=1, label="Seed (-1 = random)"),
        gr.Slider(minimum=64, maximum=1216, value=1024, step=32, label="Width"),
        gr.Slider(minimum=64, maximum=1216, value=1024, step=32, label="Height"),
    ],
    outputs=gr.Image(label="Generated Image"),
    title="Image Generation",
    description=(
        "<div style=\"text-align:center\">Generate images via Hugging Face Inference. "
        "Default model is FLUX.1-Krea</div>"
    ),
    api_description=(
        "Generate a single image from a text prompt using a Hugging Face model (serverless Inference). "
        "Parameters: prompt (str), model_id (str, creator/model-name), negative_prompt (str), steps (int, 1–100), cfg_scale (float, 1–20), "
        "sampler (str, label only), seed (int, -1=random), width/height (int, 64–1216). Returns a PIL.Image. "
        "Return the generated image to the user in this format `![Alt text](URL)`"
    ),
    allow_flagging="never",
)

# ==========================
# Video Generation (Serverless)
# ==========================

def _write_video_tmp(data_iter_or_bytes: object, suffix: str = ".mp4") -> str:
    """Write video bytes or iterable of bytes to a temporary file and return its path."""
    os.makedirs("outputs", exist_ok=True)
    fname = f"outputs/video_{int(time.time())}_{random.randint(1000,9999)}{suffix}"
    mode = "wb"
    with open(fname, mode) as f:
        # bytes-like
        if isinstance(data_iter_or_bytes, (bytes, bytearray)):
            f.write(data_iter_or_bytes)  # type: ignore[arg-type]
        # file-like with read()
        elif hasattr(data_iter_or_bytes, "read"):
            f.write(data_iter_or_bytes.read())  # type: ignore[call-arg]
        # response-like with content
        elif hasattr(data_iter_or_bytes, "content"):
            f.write(data_iter_or_bytes.content)  # type: ignore[attr-defined]
        # iterable of chunks
        elif hasattr(data_iter_or_bytes, "__iter__") and not isinstance(data_iter_or_bytes, (str, dict)):
            for chunk in data_iter_or_bytes:  # type: ignore[assignment]
                if chunk:
                    f.write(chunk)
        else:
            raise gr.Error("Unsupported video data type returned by provider.")
    return fname


HF_VIDEO_TOKEN = os.getenv("HF_READ_TOKEN") or os.getenv("HF_TOKEN")


def Generate_Video(  # <-- MCP tool #6 (Generate Video)
    prompt: Annotated[str, "Text description of the video to generate (e.g., 'a red fox running through a snowy forest at sunrise')."],
    model_id: Annotated[str, "Hugging Face model id in the form 'creator/model-name'. Defaults to Wan-AI/Wan2.2-T2V-A14B."] = "Wan-AI/Wan2.2-T2V-A14B",
    negative_prompt: Annotated[str, "What should NOT appear in the video."] = "",
    steps: Annotated[int, "Number of denoising steps (1–100). Higher can improve quality but is slower."] = 25,
    cfg_scale: Annotated[float, "Guidance scale (1–20). Higher = follow the prompt more closely, lower = more creative."] = 3.5,
    seed: Annotated[int, "Random seed for reproducibility. Use -1 for a random seed per call."] = -1,
    width: Annotated[int, "Output width in pixels (multiples of 8 recommended)."] = 768,
    height: Annotated[int, "Output height in pixels (multiples of 8 recommended)."] = 768,
    fps: Annotated[int, "Frames per second of the output video (e.g., 24)."] = 24,
    duration: Annotated[float, "Target duration in seconds (provider/model dependent, commonly 2–6s)."] = 4.0,
) -> str:
    """
    Generate a short video from a text prompt using Hugging Face Inference Providers (Serverless Inference).

    This tool follows the latest MCP guidance for Gradio-based MCP servers: clear type hints and
    docstrings define the tool schema automatically. The returned file path will be converted to a file URL
    for MCP clients.

    Args:
        prompt (str): Text description of the video to generate.
    model_id (str): The Hugging Face model id (creator/model-name). Defaults to "Wan-AI/Wan2.2-T2V-A14B".
        negative_prompt (str): What should NOT appear in the video.
        steps (int): Number of denoising steps (1–100). Higher can improve quality but is slower.
        cfg_scale (float): Guidance scale (1–20). Higher = follow the prompt more closely.
        seed (int): Random seed. Use -1 to randomize on each call.
        width (int): Output width in pixels.
        height (int): Output height in pixels.
        fps (int): Frames per second.
        duration (float): Target duration in seconds.

    Returns:
        str: Path to an MP4 file on disk (Gradio will serve this file; MCP converts it to a file URL).

    Error modes:
        - Raises gr.Error with a user-friendly message on auth/model/load errors or unsupported parameters.
    """
    if not prompt or not prompt.strip():
        raise gr.Error("Please provide a non-empty prompt.")

    if not HF_VIDEO_TOKEN:
        # Still attempt without a token (public models), but warn earlier if it fails.
        pass

    providers = ["auto", "replicate", "fal-ai"]
    last_error: Exception | None = None

    # Build a common parameters dict. Providers may ignore unsupported keys.
    parameters = {
        "negative_prompt": negative_prompt or None,
        "num_inference_steps": steps,
        "guidance_scale": cfg_scale,
        "seed": seed if seed != -1 else random.randint(1, 1_000_000_000),
        "width": width,
        "height": height,
        "fps": fps,
        # Some providers/models expect num_frames instead of duration; we pass both-friendly value
        # when supported; they may be ignored by the backend.
        "duration": duration,
    }

    for provider in providers:
        try:
            client = InferenceClient(api_key=HF_VIDEO_TOKEN, provider=provider)
            # Use the documented text_to_video API with correct parameters
            if hasattr(client, "text_to_video"):
                # Calculate num_frames from duration and fps if both provided
                num_frames = int(duration * fps) if duration and fps else None
                
                # Build extra_body for provider-specific parameters
                extra_body = {}
                if width:
                    extra_body["width"] = width
                if height:
                    extra_body["height"] = height
                if fps:
                    extra_body["fps"] = fps
                if duration:
                    extra_body["duration"] = duration
                
                result = client.text_to_video(
                    prompt=prompt,
                    model=model_id,
                    guidance_scale=cfg_scale,
                    negative_prompt=[negative_prompt] if negative_prompt else None,
                    num_frames=num_frames,
                    num_inference_steps=steps,
                    seed=parameters["seed"],
                    extra_body=extra_body if extra_body else None,
                )
            else:
                # Generic POST fallback for older versions
                result = client.post(
                    model=model_id,
                    json={
                        "inputs": prompt,
                        "parameters": {k: v for k, v in parameters.items() if v is not None},
                    },
                )

            # Save output to an .mp4
            path = _write_video_tmp(result, suffix=".mp4")
            return path
        except Exception as e:
            last_error = e
            continue

    msg = str(last_error) if last_error else "Unknown error"
    if "404" in msg:
        raise gr.Error(f"Model not found or unavailable: {model_id}. Check the id and HF token access.")
    if "503" in msg:
        raise gr.Error("The model is warming up. Please try again shortly.")
    if "401" in msg or "403" in msg:
        raise gr.Error("Authentication failed or not permitted. Set HF_READ_TOKEN/HF_TOKEN with inference access.")
    raise gr.Error(f"Video generation failed: {msg}")


video_generation_interface = gr.Interface(
    fn=Generate_Video,
    inputs=[
        gr.Textbox(label="Prompt", placeholder="Enter a prompt for the video", lines=2),
    gr.Textbox(label="Model", value="Wan-AI/Wan2.2-T2V-A14B", placeholder="creator/model-name"),
        gr.Textbox(label="Negative Prompt", value="", lines=2),
        gr.Slider(minimum=1, maximum=100, value=25, step=1, label="Steps"),
        gr.Slider(minimum=1.0, maximum=20.0, value=3.5, step=0.1, label="CFG Scale"),
        gr.Slider(minimum=-1, maximum=1_000_000_000, value=-1, step=1, label="Seed (-1 = random)"),
        gr.Slider(minimum=64, maximum=1920, value=768, step=8, label="Width"),
        gr.Slider(minimum=64, maximum=1920, value=768, step=8, label="Height"),
        gr.Slider(minimum=4, maximum=60, value=24, step=1, label="FPS"),
        gr.Slider(minimum=1.0, maximum=10.0, value=4.0, step=0.5, label="Duration (s)"),
    ],
    outputs=gr.Video(label="Generated Video"),
    title="Video Generation",
    description=(
    "<div style=\"text-align:center\">Generate short videos via Hugging Face Inference Providers. "
    "Default model is Wan2.2-T2V-A14B.</div>"
    ),
    api_description=(
        "Generate a short video from a text prompt using a Hugging Face model (Serverless Inference). "
        "Parameters: prompt (str), model_id (str), negative_prompt (str), steps (int), cfg_scale (float), seed (int), "
        "width/height (int), fps (int), duration (float). Returns a file path to an MP4 that MCP exposes as a file URL."
    ),
    allow_flagging="never",
)

# Build tabbed app including Image Generation
demo = gr.TabbedInterface(
    interface_list=[
        fetch_interface,
        concise_interface,
        code_interface,
        kokoro_interface,
        image_generation_interface,
        video_generation_interface,
    ],
    tab_names=[
        "Fetch Webpage",
        "DuckDuckGo Search",
        "Python Code Executor",
        "Kokoro TTS",
        "Image Generation",
        "Video Generation",
    ],
    title="Tools MCP",
    theme="Nymbo/Nymbo_Theme",
    css=CSS_STYLES,
)

# Launch the UI and expose all functions as MCP tools in one server
if __name__ == "__main__":
    demo.launch(mcp_server=True)