Spaces:
Build error
Build error
| """ | |
| This is an almost carbon copy of gaussian_diffusion.py from OpenAI's ImprovedDiffusion repo, which itself: | |
| This code started out as a PyTorch port of Ho et al's diffusion models: | |
| https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py | |
| Docstrings have been added, as well as DDIM sampling and a new collection of beta schedules. | |
| """ | |
| import enum | |
| import math | |
| import numpy as np | |
| import torch | |
| import torch as th | |
| from tqdm import tqdm | |
| from TTS.tts.layers.tortoise.dpm_solver import DPM_Solver, NoiseScheduleVP, model_wrapper | |
| try: | |
| from k_diffusion.sampling import sample_dpmpp_2m, sample_euler_ancestral | |
| K_DIFFUSION_SAMPLERS = {"k_euler_a": sample_euler_ancestral, "dpm++2m": sample_dpmpp_2m} | |
| except ImportError: | |
| K_DIFFUSION_SAMPLERS = None | |
| SAMPLERS = ["dpm++2m", "p", "ddim"] | |
| def normal_kl(mean1, logvar1, mean2, logvar2): | |
| """ | |
| Compute the KL divergence between two gaussians. | |
| Shapes are automatically broadcasted, so batches can be compared to | |
| scalars, among other use cases. | |
| """ | |
| tensor = None | |
| for obj in (mean1, logvar1, mean2, logvar2): | |
| if isinstance(obj, th.Tensor): | |
| tensor = obj | |
| break | |
| assert tensor is not None, "at least one argument must be a Tensor" | |
| # Force variances to be Tensors. Broadcasting helps convert scalars to | |
| # Tensors, but it does not work for th.exp(). | |
| logvar1, logvar2 = [x if isinstance(x, th.Tensor) else th.tensor(x).to(tensor) for x in (logvar1, logvar2)] | |
| return 0.5 * (-1.0 + logvar2 - logvar1 + th.exp(logvar1 - logvar2) + ((mean1 - mean2) ** 2) * th.exp(-logvar2)) | |
| def approx_standard_normal_cdf(x): | |
| """ | |
| A fast approximation of the cumulative distribution function of the | |
| standard normal. | |
| """ | |
| return 0.5 * (1.0 + th.tanh(np.sqrt(2.0 / np.pi) * (x + 0.044715 * th.pow(x, 3)))) | |
| def discretized_gaussian_log_likelihood(x, *, means, log_scales): | |
| """ | |
| Compute the log-likelihood of a Gaussian distribution discretizing to a | |
| given image. | |
| :param x: the target images. It is assumed that this was uint8 values, | |
| rescaled to the range [-1, 1]. | |
| :param means: the Gaussian mean Tensor. | |
| :param log_scales: the Gaussian log stddev Tensor. | |
| :return: a tensor like x of log probabilities (in nats). | |
| """ | |
| assert x.shape == means.shape == log_scales.shape | |
| centered_x = x - means | |
| inv_stdv = th.exp(-log_scales) | |
| plus_in = inv_stdv * (centered_x + 1.0 / 255.0) | |
| cdf_plus = approx_standard_normal_cdf(plus_in) | |
| min_in = inv_stdv * (centered_x - 1.0 / 255.0) | |
| cdf_min = approx_standard_normal_cdf(min_in) | |
| log_cdf_plus = th.log(cdf_plus.clamp(min=1e-12)) | |
| log_one_minus_cdf_min = th.log((1.0 - cdf_min).clamp(min=1e-12)) | |
| cdf_delta = cdf_plus - cdf_min | |
| log_probs = th.where( | |
| x < -0.999, | |
| log_cdf_plus, | |
| th.where(x > 0.999, log_one_minus_cdf_min, th.log(cdf_delta.clamp(min=1e-12))), | |
| ) | |
| assert log_probs.shape == x.shape | |
| return log_probs | |
| def mean_flat(tensor): | |
| """ | |
| Take the mean over all non-batch dimensions. | |
| """ | |
| return tensor.mean(dim=list(range(1, len(tensor.shape)))) | |
| def get_named_beta_schedule(schedule_name, num_diffusion_timesteps): | |
| """ | |
| Get a pre-defined beta schedule for the given name. | |
| The beta schedule library consists of beta schedules which remain similar | |
| in the limit of num_diffusion_timesteps. | |
| Beta schedules may be added, but should not be removed or changed once | |
| they are committed to maintain backwards compatibility. | |
| """ | |
| if schedule_name == "linear": | |
| # Linear schedule from Ho et al, extended to work for any number of | |
| # diffusion steps. | |
| scale = 1000 / num_diffusion_timesteps | |
| beta_start = scale * 0.0001 | |
| beta_end = scale * 0.02 | |
| return np.linspace(beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64) | |
| elif schedule_name == "cosine": | |
| return betas_for_alpha_bar( | |
| num_diffusion_timesteps, | |
| lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2, | |
| ) | |
| else: | |
| raise NotImplementedError(f"unknown beta schedule: {schedule_name}") | |
| def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999): | |
| """ | |
| Create a beta schedule that discretizes the given alpha_t_bar function, | |
| which defines the cumulative product of (1-beta) over time from t = [0,1]. | |
| :param num_diffusion_timesteps: the number of betas to produce. | |
| :param alpha_bar: a lambda that takes an argument t from 0 to 1 and | |
| produces the cumulative product of (1-beta) up to that | |
| part of the diffusion process. | |
| :param max_beta: the maximum beta to use; use values lower than 1 to | |
| prevent singularities. | |
| """ | |
| betas = [] | |
| for i in range(num_diffusion_timesteps): | |
| t1 = i / num_diffusion_timesteps | |
| t2 = (i + 1) / num_diffusion_timesteps | |
| betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) | |
| return np.array(betas) | |
| class ModelMeanType(enum.Enum): | |
| """ | |
| Which type of output the model predicts. | |
| """ | |
| PREVIOUS_X = "previous_x" # the model predicts x_{t-1} | |
| START_X = "start_x" # the model predicts x_0 | |
| EPSILON = "epsilon" # the model predicts epsilon | |
| class ModelVarType(enum.Enum): | |
| """ | |
| What is used as the model's output variance. | |
| The LEARNED_RANGE option has been added to allow the model to predict | |
| values between FIXED_SMALL and FIXED_LARGE, making its job easier. | |
| """ | |
| LEARNED = "learned" | |
| FIXED_SMALL = "fixed_small" | |
| FIXED_LARGE = "fixed_large" | |
| LEARNED_RANGE = "learned_range" | |
| class LossType(enum.Enum): | |
| MSE = "mse" # use raw MSE loss (and KL when learning variances) | |
| RESCALED_MSE = "rescaled_mse" # use raw MSE loss (with RESCALED_KL when learning variances) | |
| KL = "kl" # use the variational lower-bound | |
| RESCALED_KL = "rescaled_kl" # like KL, but rescale to estimate the full VLB | |
| def is_vb(self): | |
| return self == LossType.KL or self == LossType.RESCALED_KL | |
| class GaussianDiffusion: | |
| """ | |
| Utilities for training and sampling diffusion models. | |
| Ported directly from here, and then adapted over time to further experimentation. | |
| https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py#L42 | |
| :param betas: a 1-D numpy array of betas for each diffusion timestep, | |
| starting at T and going to 1. | |
| :param model_mean_type: a ModelMeanType determining what the model outputs. | |
| :param model_var_type: a ModelVarType determining how variance is output. | |
| :param loss_type: a LossType determining the loss function to use. | |
| :param rescale_timesteps: if True, pass floating point timesteps into the | |
| model so that they are always scaled like in the | |
| original paper (0 to 1000). | |
| """ | |
| def __init__( | |
| self, | |
| *, | |
| betas, | |
| model_mean_type, | |
| model_var_type, | |
| loss_type, | |
| rescale_timesteps=False, | |
| conditioning_free=False, | |
| conditioning_free_k=1, | |
| ramp_conditioning_free=True, | |
| sampler="p", | |
| ): | |
| self.sampler = sampler | |
| self.model_mean_type = ModelMeanType(model_mean_type) | |
| self.model_var_type = ModelVarType(model_var_type) | |
| self.loss_type = LossType(loss_type) | |
| self.rescale_timesteps = rescale_timesteps | |
| self.conditioning_free = conditioning_free | |
| self.conditioning_free_k = conditioning_free_k | |
| self.ramp_conditioning_free = ramp_conditioning_free | |
| # Use float64 for accuracy. | |
| betas = np.array(betas, dtype=np.float64) | |
| self.betas = betas | |
| assert len(betas.shape) == 1, "betas must be 1-D" | |
| assert (betas > 0).all() and (betas <= 1).all() | |
| self.num_timesteps = int(betas.shape[0]) | |
| alphas = 1.0 - betas | |
| self.alphas_cumprod = np.cumprod(alphas, axis=0) | |
| self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1]) | |
| self.alphas_cumprod_next = np.append(self.alphas_cumprod[1:], 0.0) | |
| assert self.alphas_cumprod_prev.shape == (self.num_timesteps,) | |
| # calculations for diffusion q(x_t | x_{t-1}) and others | |
| self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod) | |
| self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod) | |
| self.log_one_minus_alphas_cumprod = np.log(1.0 - self.alphas_cumprod) | |
| self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod) | |
| self.sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod - 1) | |
| # calculations for posterior q(x_{t-1} | x_t, x_0) | |
| self.posterior_variance = betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod) | |
| # log calculation clipped because the posterior variance is 0 at the | |
| # beginning of the diffusion chain. | |
| self.posterior_log_variance_clipped = np.log(np.append(self.posterior_variance[1], self.posterior_variance[1:])) | |
| self.posterior_mean_coef1 = betas * np.sqrt(self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod) | |
| self.posterior_mean_coef2 = (1.0 - self.alphas_cumprod_prev) * np.sqrt(alphas) / (1.0 - self.alphas_cumprod) | |
| def q_mean_variance(self, x_start, t): | |
| """ | |
| Get the distribution q(x_t | x_0). | |
| :param x_start: the [N x C x ...] tensor of noiseless inputs. | |
| :param t: the number of diffusion steps (minus 1). Here, 0 means one step. | |
| :return: A tuple (mean, variance, log_variance), all of x_start's shape. | |
| """ | |
| mean = _extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start | |
| variance = _extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape) | |
| log_variance = _extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape) | |
| return mean, variance, log_variance | |
| def q_sample(self, x_start, t, noise=None): | |
| """ | |
| Diffuse the data for a given number of diffusion steps. | |
| In other words, sample from q(x_t | x_0). | |
| :param x_start: the initial data batch. | |
| :param t: the number of diffusion steps (minus 1). Here, 0 means one step. | |
| :param noise: if specified, the split-out normal noise. | |
| :return: A noisy version of x_start. | |
| """ | |
| if noise is None: | |
| noise = th.randn_like(x_start) | |
| assert noise.shape == x_start.shape | |
| return ( | |
| _extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start | |
| + _extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise | |
| ) | |
| def q_posterior_mean_variance(self, x_start, x_t, t): | |
| """ | |
| Compute the mean and variance of the diffusion posterior: | |
| q(x_{t-1} | x_t, x_0) | |
| """ | |
| assert x_start.shape == x_t.shape | |
| posterior_mean = ( | |
| _extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start | |
| + _extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t | |
| ) | |
| posterior_variance = _extract_into_tensor(self.posterior_variance, t, x_t.shape) | |
| posterior_log_variance_clipped = _extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape) | |
| assert ( | |
| posterior_mean.shape[0] | |
| == posterior_variance.shape[0] | |
| == posterior_log_variance_clipped.shape[0] | |
| == x_start.shape[0] | |
| ) | |
| return posterior_mean, posterior_variance, posterior_log_variance_clipped | |
| def p_mean_variance(self, model, x, t, clip_denoised=True, denoised_fn=None, model_kwargs=None): | |
| """ | |
| Apply the model to get p(x_{t-1} | x_t), as well as a prediction of | |
| the initial x, x_0. | |
| :param model: the model, which takes a signal and a batch of timesteps | |
| as input. | |
| :param x: the [N x C x ...] tensor at time t. | |
| :param t: a 1-D Tensor of timesteps. | |
| :param clip_denoised: if True, clip the denoised signal into [-1, 1]. | |
| :param denoised_fn: if not None, a function which applies to the | |
| x_start prediction before it is used to sample. Applies before | |
| clip_denoised. | |
| :param model_kwargs: if not None, a dict of extra keyword arguments to | |
| pass to the model. This can be used for conditioning. | |
| :return: a dict with the following keys: | |
| - 'mean': the model mean output. | |
| - 'variance': the model variance output. | |
| - 'log_variance': the log of 'variance'. | |
| - 'pred_xstart': the prediction for x_0. | |
| """ | |
| if model_kwargs is None: | |
| model_kwargs = {} | |
| B, C = x.shape[:2] | |
| assert t.shape == (B,) | |
| model_output = model(x, self._scale_timesteps(t), **model_kwargs) | |
| if self.conditioning_free: | |
| model_output_no_conditioning = model(x, self._scale_timesteps(t), conditioning_free=True, **model_kwargs) | |
| if self.model_var_type in [ModelVarType.LEARNED, ModelVarType.LEARNED_RANGE]: | |
| assert model_output.shape == (B, C * 2, *x.shape[2:]) | |
| model_output, model_var_values = th.split(model_output, C, dim=1) | |
| if self.conditioning_free: | |
| model_output_no_conditioning, _ = th.split(model_output_no_conditioning, C, dim=1) | |
| if self.model_var_type == ModelVarType.LEARNED: | |
| model_log_variance = model_var_values | |
| model_variance = th.exp(model_log_variance) | |
| else: | |
| min_log = _extract_into_tensor(self.posterior_log_variance_clipped, t, x.shape) | |
| max_log = _extract_into_tensor(np.log(self.betas), t, x.shape) | |
| # The model_var_values is [-1, 1] for [min_var, max_var]. | |
| frac = (model_var_values + 1) / 2 | |
| model_log_variance = frac * max_log + (1 - frac) * min_log | |
| model_variance = th.exp(model_log_variance) | |
| else: | |
| model_variance, model_log_variance = { | |
| # for fixedlarge, we set the initial (log-)variance like so | |
| # to get a better decoder log likelihood. | |
| ModelVarType.FIXED_LARGE: ( | |
| np.append(self.posterior_variance[1], self.betas[1:]), | |
| np.log(np.append(self.posterior_variance[1], self.betas[1:])), | |
| ), | |
| ModelVarType.FIXED_SMALL: ( | |
| self.posterior_variance, | |
| self.posterior_log_variance_clipped, | |
| ), | |
| }[self.model_var_type] | |
| model_variance = _extract_into_tensor(model_variance, t, x.shape) | |
| model_log_variance = _extract_into_tensor(model_log_variance, t, x.shape) | |
| if self.conditioning_free: | |
| if self.ramp_conditioning_free: | |
| assert t.shape[0] == 1 # This should only be used in inference. | |
| cfk = self.conditioning_free_k * (1 - self._scale_timesteps(t)[0].item() / self.num_timesteps) | |
| else: | |
| cfk = self.conditioning_free_k | |
| model_output = (1 + cfk) * model_output - cfk * model_output_no_conditioning | |
| def process_xstart(x): | |
| if denoised_fn is not None: | |
| x = denoised_fn(x) | |
| if clip_denoised: | |
| return x.clamp(-1, 1) | |
| return x | |
| if self.model_mean_type == ModelMeanType.PREVIOUS_X: | |
| pred_xstart = process_xstart(self._predict_xstart_from_xprev(x_t=x, t=t, xprev=model_output)) | |
| model_mean = model_output | |
| elif self.model_mean_type in [ModelMeanType.START_X, ModelMeanType.EPSILON]: | |
| if self.model_mean_type == ModelMeanType.START_X: | |
| pred_xstart = process_xstart(model_output) | |
| else: | |
| pred_xstart = process_xstart(self._predict_xstart_from_eps(x_t=x, t=t, eps=model_output)) | |
| model_mean, _, _ = self.q_posterior_mean_variance(x_start=pred_xstart, x_t=x, t=t) | |
| else: | |
| raise NotImplementedError(self.model_mean_type) | |
| assert model_mean.shape == model_log_variance.shape == pred_xstart.shape == x.shape | |
| return { | |
| "mean": model_mean, | |
| "variance": model_variance, | |
| "log_variance": model_log_variance, | |
| "pred_xstart": pred_xstart, | |
| } | |
| def _predict_xstart_from_eps(self, x_t, t, eps): | |
| assert x_t.shape == eps.shape | |
| return ( | |
| _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t | |
| - _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * eps | |
| ) | |
| def _predict_xstart_from_xprev(self, x_t, t, xprev): | |
| assert x_t.shape == xprev.shape | |
| return ( # (xprev - coef2*x_t) / coef1 | |
| _extract_into_tensor(1.0 / self.posterior_mean_coef1, t, x_t.shape) * xprev | |
| - _extract_into_tensor(self.posterior_mean_coef2 / self.posterior_mean_coef1, t, x_t.shape) * x_t | |
| ) | |
| def _predict_eps_from_xstart(self, x_t, t, pred_xstart): | |
| return ( | |
| _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart | |
| ) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) | |
| def _scale_timesteps(self, t): | |
| if self.rescale_timesteps: | |
| return t.float() * (1000.0 / self.num_timesteps) | |
| return t | |
| def condition_mean(self, cond_fn, p_mean_var, x, t, model_kwargs=None): | |
| """ | |
| Compute the mean for the previous step, given a function cond_fn that | |
| computes the gradient of a conditional log probability with respect to | |
| x. In particular, cond_fn computes grad(log(p(y|x))), and we want to | |
| condition on y. | |
| This uses the conditioning strategy from Sohl-Dickstein et al. (2015). | |
| """ | |
| gradient = cond_fn(x, self._scale_timesteps(t), **model_kwargs) | |
| new_mean = p_mean_var["mean"].float() + p_mean_var["variance"] * gradient.float() | |
| return new_mean | |
| def condition_score(self, cond_fn, p_mean_var, x, t, model_kwargs=None): | |
| """ | |
| Compute what the p_mean_variance output would have been, should the | |
| model's score function be conditioned by cond_fn. | |
| See condition_mean() for details on cond_fn. | |
| Unlike condition_mean(), this instead uses the conditioning strategy | |
| from Song et al (2020). | |
| """ | |
| alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape) | |
| eps = self._predict_eps_from_xstart(x, t, p_mean_var["pred_xstart"]) | |
| eps = eps - (1 - alpha_bar).sqrt() * cond_fn(x, self._scale_timesteps(t), **model_kwargs) | |
| out = p_mean_var.copy() | |
| out["pred_xstart"] = self._predict_xstart_from_eps(x, t, eps) | |
| out["mean"], _, _ = self.q_posterior_mean_variance(x_start=out["pred_xstart"], x_t=x, t=t) | |
| return out | |
| def k_diffusion_sample_loop( | |
| self, | |
| k_sampler, | |
| pbar, | |
| model, | |
| shape, | |
| noise=None, # all given | |
| clip_denoised=True, | |
| denoised_fn=None, | |
| cond_fn=None, | |
| device=None, # ALL UNUSED | |
| model_kwargs=None, # {'precomputed_aligned_embeddings': precomputed_embeddings}, | |
| progress=False, # unused as well | |
| ): | |
| assert isinstance(model_kwargs, dict) | |
| if device is None: | |
| device = next(model.parameters()).device | |
| s_in = noise.new_ones([noise.shape[0]]) | |
| def model_split(*args, **kwargs): | |
| model_output = model(*args, **kwargs) | |
| model_epsilon, model_var = th.split(model_output, model_output.shape[1] // 2, dim=1) | |
| return model_epsilon, model_var | |
| # | |
| """ | |
| print(self.betas) | |
| print(th.tensor(self.betas)) | |
| noise_schedule = NoiseScheduleVP(schedule='discrete', betas=th.tensor(self.betas)) | |
| """ | |
| noise_schedule = NoiseScheduleVP(schedule="linear", continuous_beta_0=0.1 / 4, continuous_beta_1=20.0 / 4) | |
| def model_fn_prewrap(x, t, *args, **kwargs): | |
| """ | |
| x_in = torch.cat([x] * 2) | |
| t_in = torch.cat([t_continuous] * 2) | |
| c_in = torch.cat([unconditional_condition, condition]) | |
| noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2) | |
| print(t) | |
| print(self.timestep_map) | |
| exit() | |
| """ | |
| """ | |
| model_output = model(x, self._scale_timesteps(t*4000), **model_kwargs) | |
| out = self.p_mean_variance(model, x, t*4000, model_kwargs=model_kwargs) | |
| return out['pred_xstart'] | |
| """ | |
| x, _ = x.chunk(2) | |
| t, _ = (t * 1000).chunk(2) | |
| res = torch.cat( | |
| [ | |
| model_split(x, t, conditioning_free=True, **model_kwargs)[0], | |
| model_split(x, t, **model_kwargs)[0], | |
| ] | |
| ) | |
| pbar.update(1) | |
| return res | |
| model_fn = model_wrapper( | |
| model_fn_prewrap, | |
| noise_schedule, | |
| model_type="noise", # "noise" or "x_start" or "v" or "score" | |
| model_kwargs=model_kwargs, | |
| guidance_type="classifier-free", | |
| condition=th.Tensor(1), | |
| unconditional_condition=th.Tensor(1), | |
| guidance_scale=self.conditioning_free_k, | |
| ) | |
| dpm_solver = DPM_Solver(model_fn, noise_schedule, algorithm_type="dpmsolver++") | |
| x_sample = dpm_solver.sample( | |
| noise, | |
| steps=self.num_timesteps, | |
| order=2, | |
| skip_type="time_uniform", | |
| method="multistep", | |
| ) | |
| #''' | |
| return x_sample | |
| def sample_loop(self, *args, **kwargs): | |
| s = self.sampler | |
| if s == "p": | |
| return self.p_sample_loop(*args, **kwargs) | |
| elif s == "ddim": | |
| return self.ddim_sample_loop(*args, **kwargs) | |
| elif s == "dpm++2m": | |
| if self.conditioning_free is not True: | |
| raise RuntimeError("cond_free must be true") | |
| with tqdm(total=self.num_timesteps) as pbar: | |
| if K_DIFFUSION_SAMPLERS is None: | |
| raise ModuleNotFoundError("Install k_diffusion for using k_diffusion samplers") | |
| return self.k_diffusion_sample_loop(K_DIFFUSION_SAMPLERS[s], pbar, *args, **kwargs) | |
| else: | |
| raise RuntimeError("sampler not impl") | |
| def p_sample( | |
| self, | |
| model, | |
| x, | |
| t, | |
| clip_denoised=True, | |
| denoised_fn=None, | |
| cond_fn=None, | |
| model_kwargs=None, | |
| ): | |
| """ | |
| Sample x_{t-1} from the model at the given timestep. | |
| :param model: the model to sample from. | |
| :param x: the current tensor at x_{t-1}. | |
| :param t: the value of t, starting at 0 for the first diffusion step. | |
| :param clip_denoised: if True, clip the x_start prediction to [-1, 1]. | |
| :param denoised_fn: if not None, a function which applies to the | |
| x_start prediction before it is used to sample. | |
| :param cond_fn: if not None, this is a gradient function that acts | |
| similarly to the model. | |
| :param model_kwargs: if not None, a dict of extra keyword arguments to | |
| pass to the model. This can be used for conditioning. | |
| :return: a dict containing the following keys: | |
| - 'sample': a random sample from the model. | |
| - 'pred_xstart': a prediction of x_0. | |
| """ | |
| out = self.p_mean_variance( | |
| model, | |
| x, | |
| t, | |
| clip_denoised=clip_denoised, | |
| denoised_fn=denoised_fn, | |
| model_kwargs=model_kwargs, | |
| ) | |
| noise = th.randn_like(x) | |
| nonzero_mask = (t != 0).float().view(-1, *([1] * (len(x.shape) - 1))) # no noise when t == 0 | |
| if cond_fn is not None: | |
| out["mean"] = self.condition_mean(cond_fn, out, x, t, model_kwargs=model_kwargs) | |
| sample = out["mean"] + nonzero_mask * th.exp(0.5 * out["log_variance"]) * noise | |
| return {"sample": sample, "pred_xstart": out["pred_xstart"]} | |
| def p_sample_loop( | |
| self, | |
| model, | |
| shape, | |
| noise=None, | |
| clip_denoised=True, | |
| denoised_fn=None, | |
| cond_fn=None, | |
| model_kwargs=None, | |
| device=None, | |
| progress=False, | |
| ): | |
| """ | |
| Generate samples from the model. | |
| :param model: the model module. | |
| :param shape: the shape of the samples, (N, C, H, W). | |
| :param noise: if specified, the noise from the encoder to sample. | |
| Should be of the same shape as `shape`. | |
| :param clip_denoised: if True, clip x_start predictions to [-1, 1]. | |
| :param denoised_fn: if not None, a function which applies to the | |
| x_start prediction before it is used to sample. | |
| :param cond_fn: if not None, this is a gradient function that acts | |
| similarly to the model. | |
| :param model_kwargs: if not None, a dict of extra keyword arguments to | |
| pass to the model. This can be used for conditioning. | |
| :param device: if specified, the device to create the samples on. | |
| If not specified, use a model parameter's device. | |
| :param progress: if True, show a tqdm progress bar. | |
| :return: a non-differentiable batch of samples. | |
| """ | |
| final = None | |
| for sample in self.p_sample_loop_progressive( | |
| model, | |
| shape, | |
| noise=noise, | |
| clip_denoised=clip_denoised, | |
| denoised_fn=denoised_fn, | |
| cond_fn=cond_fn, | |
| model_kwargs=model_kwargs, | |
| device=device, | |
| progress=progress, | |
| ): | |
| final = sample | |
| return final["sample"] | |
| def p_sample_loop_progressive( | |
| self, | |
| model, | |
| shape, | |
| noise=None, | |
| clip_denoised=True, | |
| denoised_fn=None, | |
| cond_fn=None, | |
| model_kwargs=None, | |
| device=None, | |
| progress=False, | |
| ): | |
| """ | |
| Generate samples from the model and yield intermediate samples from | |
| each timestep of diffusion. | |
| Arguments are the same as p_sample_loop(). | |
| Returns a generator over dicts, where each dict is the return value of | |
| p_sample(). | |
| """ | |
| if device is None: | |
| device = next(model.parameters()).device | |
| assert isinstance(shape, (tuple, list)) | |
| if noise is not None: | |
| img = noise | |
| else: | |
| img = th.randn(*shape, device=device) | |
| indices = list(range(self.num_timesteps))[::-1] | |
| for i in tqdm(indices, disable=not progress): | |
| t = th.tensor([i] * shape[0], device=device) | |
| with th.no_grad(): | |
| out = self.p_sample( | |
| model, | |
| img, | |
| t, | |
| clip_denoised=clip_denoised, | |
| denoised_fn=denoised_fn, | |
| cond_fn=cond_fn, | |
| model_kwargs=model_kwargs, | |
| ) | |
| yield out | |
| img = out["sample"] | |
| def ddim_sample( | |
| self, | |
| model, | |
| x, | |
| t, | |
| clip_denoised=True, | |
| denoised_fn=None, | |
| cond_fn=None, | |
| model_kwargs=None, | |
| eta=0.0, | |
| ): | |
| """ | |
| Sample x_{t-1} from the model using DDIM. | |
| Same usage as p_sample(). | |
| """ | |
| out = self.p_mean_variance( | |
| model, | |
| x, | |
| t, | |
| clip_denoised=clip_denoised, | |
| denoised_fn=denoised_fn, | |
| model_kwargs=model_kwargs, | |
| ) | |
| if cond_fn is not None: | |
| out = self.condition_score(cond_fn, out, x, t, model_kwargs=model_kwargs) | |
| # Usually our model outputs epsilon, but we re-derive it | |
| # in case we used x_start or x_prev prediction. | |
| eps = self._predict_eps_from_xstart(x, t, out["pred_xstart"]) | |
| alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape) | |
| alpha_bar_prev = _extract_into_tensor(self.alphas_cumprod_prev, t, x.shape) | |
| sigma = eta * th.sqrt((1 - alpha_bar_prev) / (1 - alpha_bar)) * th.sqrt(1 - alpha_bar / alpha_bar_prev) | |
| # Equation 12. | |
| noise = th.randn_like(x) | |
| mean_pred = out["pred_xstart"] * th.sqrt(alpha_bar_prev) + th.sqrt(1 - alpha_bar_prev - sigma**2) * eps | |
| nonzero_mask = (t != 0).float().view(-1, *([1] * (len(x.shape) - 1))) # no noise when t == 0 | |
| sample = mean_pred + nonzero_mask * sigma * noise | |
| return {"sample": sample, "pred_xstart": out["pred_xstart"]} | |
| def ddim_reverse_sample( | |
| self, | |
| model, | |
| x, | |
| t, | |
| clip_denoised=True, | |
| denoised_fn=None, | |
| model_kwargs=None, | |
| eta=0.0, | |
| ): | |
| """ | |
| Sample x_{t+1} from the model using DDIM reverse ODE. | |
| """ | |
| assert eta == 0.0, "Reverse ODE only for deterministic path" | |
| out = self.p_mean_variance( | |
| model, | |
| x, | |
| t, | |
| clip_denoised=clip_denoised, | |
| denoised_fn=denoised_fn, | |
| model_kwargs=model_kwargs, | |
| ) | |
| # Usually our model outputs epsilon, but we re-derive it | |
| # in case we used x_start or x_prev prediction. | |
| eps = ( | |
| _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x.shape) * x - out["pred_xstart"] | |
| ) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x.shape) | |
| alpha_bar_next = _extract_into_tensor(self.alphas_cumprod_next, t, x.shape) | |
| # Equation 12. reversed | |
| mean_pred = out["pred_xstart"] * th.sqrt(alpha_bar_next) + th.sqrt(1 - alpha_bar_next) * eps | |
| return {"sample": mean_pred, "pred_xstart": out["pred_xstart"]} | |
| def ddim_sample_loop( | |
| self, | |
| model, | |
| shape, | |
| noise=None, | |
| clip_denoised=True, | |
| denoised_fn=None, | |
| cond_fn=None, | |
| model_kwargs=None, | |
| device=None, | |
| progress=False, | |
| eta=0.0, | |
| ): | |
| """ | |
| Generate samples from the model using DDIM. | |
| Same usage as p_sample_loop(). | |
| """ | |
| final = None | |
| for sample in self.ddim_sample_loop_progressive( | |
| model, | |
| shape, | |
| noise=noise, | |
| clip_denoised=clip_denoised, | |
| denoised_fn=denoised_fn, | |
| cond_fn=cond_fn, | |
| model_kwargs=model_kwargs, | |
| device=device, | |
| progress=progress, | |
| eta=eta, | |
| ): | |
| final = sample | |
| return final["sample"] | |
| def ddim_sample_loop_progressive( | |
| self, | |
| model, | |
| shape, | |
| noise=None, | |
| clip_denoised=True, | |
| denoised_fn=None, | |
| cond_fn=None, | |
| model_kwargs=None, | |
| device=None, | |
| progress=False, | |
| eta=0.0, | |
| ): | |
| """ | |
| Use DDIM to sample from the model and yield intermediate samples from | |
| each timestep of DDIM. | |
| Same usage as p_sample_loop_progressive(). | |
| """ | |
| if device is None: | |
| device = next(model.parameters()).device | |
| assert isinstance(shape, (tuple, list)) | |
| if noise is not None: | |
| img = noise | |
| else: | |
| img = th.randn(*shape, device=device) | |
| indices = list(range(self.num_timesteps))[::-1] | |
| if progress: | |
| # Lazy import so that we don't depend on tqdm. | |
| from tqdm.auto import tqdm | |
| indices = tqdm(indices, disable=not progress) | |
| for i in indices: | |
| t = th.tensor([i] * shape[0], device=device) | |
| with th.no_grad(): | |
| out = self.ddim_sample( | |
| model, | |
| img, | |
| t, | |
| clip_denoised=clip_denoised, | |
| denoised_fn=denoised_fn, | |
| cond_fn=cond_fn, | |
| model_kwargs=model_kwargs, | |
| eta=eta, | |
| ) | |
| yield out | |
| img = out["sample"] | |
| def _vb_terms_bpd(self, model, x_start, x_t, t, clip_denoised=True, model_kwargs=None): | |
| """ | |
| Get a term for the variational lower-bound. | |
| The resulting units are bits (rather than nats, as one might expect). | |
| This allows for comparison to other papers. | |
| :return: a dict with the following keys: | |
| - 'output': a shape [N] tensor of NLLs or KLs. | |
| - 'pred_xstart': the x_0 predictions. | |
| """ | |
| true_mean, _, true_log_variance_clipped = self.q_posterior_mean_variance(x_start=x_start, x_t=x_t, t=t) | |
| out = self.p_mean_variance(model, x_t, t, clip_denoised=clip_denoised, model_kwargs=model_kwargs) | |
| kl = normal_kl(true_mean, true_log_variance_clipped, out["mean"], out["log_variance"]) | |
| kl = mean_flat(kl) / np.log(2.0) | |
| decoder_nll = -discretized_gaussian_log_likelihood( | |
| x_start, means=out["mean"], log_scales=0.5 * out["log_variance"] | |
| ) | |
| assert decoder_nll.shape == x_start.shape | |
| decoder_nll = mean_flat(decoder_nll) / np.log(2.0) | |
| # At the first timestep return the decoder NLL, | |
| # otherwise return KL(q(x_{t-1}|x_t,x_0) || p(x_{t-1}|x_t)) | |
| output = th.where((t == 0), decoder_nll, kl) | |
| return {"output": output, "pred_xstart": out["pred_xstart"]} | |
| def training_losses(self, model, x_start, t, model_kwargs=None, noise=None): | |
| """ | |
| Compute training losses for a single timestep. | |
| :param model: the model to evaluate loss on. | |
| :param x_start: the [N x C x ...] tensor of inputs. | |
| :param t: a batch of timestep indices. | |
| :param model_kwargs: if not None, a dict of extra keyword arguments to | |
| pass to the model. This can be used for conditioning. | |
| :param noise: if specified, the specific Gaussian noise to try to remove. | |
| :return: a dict with the key "loss" containing a tensor of shape [N]. | |
| Some mean or variance settings may also have other keys. | |
| """ | |
| if model_kwargs is None: | |
| model_kwargs = {} | |
| if noise is None: | |
| noise = th.randn_like(x_start) | |
| x_t = self.q_sample(x_start, t, noise=noise) | |
| terms = {} | |
| if self.loss_type == LossType.KL or self.loss_type == LossType.RESCALED_KL: | |
| # TODO: support multiple model outputs for this mode. | |
| terms["loss"] = self._vb_terms_bpd( | |
| model=model, | |
| x_start=x_start, | |
| x_t=x_t, | |
| t=t, | |
| clip_denoised=False, | |
| model_kwargs=model_kwargs, | |
| )["output"] | |
| if self.loss_type == LossType.RESCALED_KL: | |
| terms["loss"] *= self.num_timesteps | |
| elif self.loss_type == LossType.MSE or self.loss_type == LossType.RESCALED_MSE: | |
| model_outputs = model(x_t, self._scale_timesteps(t), **model_kwargs) | |
| if isinstance(model_outputs, tuple): | |
| model_output = model_outputs[0] | |
| terms["extra_outputs"] = model_outputs[1:] | |
| else: | |
| model_output = model_outputs | |
| if self.model_var_type in [ | |
| ModelVarType.LEARNED, | |
| ModelVarType.LEARNED_RANGE, | |
| ]: | |
| B, C = x_t.shape[:2] | |
| assert model_output.shape == (B, C * 2, *x_t.shape[2:]) | |
| model_output, model_var_values = th.split(model_output, C, dim=1) | |
| # Learn the variance using the variational bound, but don't let | |
| # it affect our mean prediction. | |
| frozen_out = th.cat([model_output.detach(), model_var_values], dim=1) | |
| terms["vb"] = self._vb_terms_bpd( | |
| model=lambda *args, r=frozen_out: r, | |
| x_start=x_start, | |
| x_t=x_t, | |
| t=t, | |
| clip_denoised=False, | |
| )["output"] | |
| if self.loss_type == LossType.RESCALED_MSE: | |
| # Divide by 1000 for equivalence with initial implementation. | |
| # Without a factor of 1/1000, the VB term hurts the MSE term. | |
| terms["vb"] *= self.num_timesteps / 1000.0 | |
| if self.model_mean_type == ModelMeanType.PREVIOUS_X: | |
| target = self.q_posterior_mean_variance(x_start=x_start, x_t=x_t, t=t)[0] | |
| x_start_pred = torch.zeros(x_start) # Not supported. | |
| elif self.model_mean_type == ModelMeanType.START_X: | |
| target = x_start | |
| x_start_pred = model_output | |
| elif self.model_mean_type == ModelMeanType.EPSILON: | |
| target = noise | |
| x_start_pred = self._predict_xstart_from_eps(x_t, t, model_output) | |
| else: | |
| raise NotImplementedError(self.model_mean_type) | |
| assert model_output.shape == target.shape == x_start.shape | |
| terms["mse"] = mean_flat((target - model_output) ** 2) | |
| terms["x_start_predicted"] = x_start_pred | |
| if "vb" in terms: | |
| terms["loss"] = terms["mse"] + terms["vb"] | |
| else: | |
| terms["loss"] = terms["mse"] | |
| else: | |
| raise NotImplementedError(self.loss_type) | |
| return terms | |
| def autoregressive_training_losses( | |
| self, model, x_start, t, model_output_keys, gd_out_key, model_kwargs=None, noise=None | |
| ): | |
| """ | |
| Compute training losses for a single timestep. | |
| :param model: the model to evaluate loss on. | |
| :param x_start: the [N x C x ...] tensor of inputs. | |
| :param t: a batch of timestep indices. | |
| :param model_kwargs: if not None, a dict of extra keyword arguments to | |
| pass to the model. This can be used for conditioning. | |
| :param noise: if specified, the specific Gaussian noise to try to remove. | |
| :return: a dict with the key "loss" containing a tensor of shape [N]. | |
| Some mean or variance settings may also have other keys. | |
| """ | |
| if model_kwargs is None: | |
| model_kwargs = {} | |
| if noise is None: | |
| noise = th.randn_like(x_start) | |
| x_t = self.q_sample(x_start, t, noise=noise) | |
| terms = {} | |
| if self.loss_type == LossType.KL or self.loss_type == LossType.RESCALED_KL: | |
| assert False # not currently supported for this type of diffusion. | |
| elif self.loss_type == LossType.MSE or self.loss_type == LossType.RESCALED_MSE: | |
| model_outputs = model(x_t, x_start, self._scale_timesteps(t), **model_kwargs) | |
| terms.update({k: o for k, o in zip(model_output_keys, model_outputs)}) | |
| model_output = terms[gd_out_key] | |
| if self.model_var_type in [ | |
| ModelVarType.LEARNED, | |
| ModelVarType.LEARNED_RANGE, | |
| ]: | |
| B, C = x_t.shape[:2] | |
| assert model_output.shape == (B, C, 2, *x_t.shape[2:]) | |
| model_output, model_var_values = model_output[:, :, 0], model_output[:, :, 1] | |
| # Learn the variance using the variational bound, but don't let | |
| # it affect our mean prediction. | |
| frozen_out = th.cat([model_output.detach(), model_var_values], dim=1) | |
| terms["vb"] = self._vb_terms_bpd( | |
| model=lambda *args, r=frozen_out: r, | |
| x_start=x_start, | |
| x_t=x_t, | |
| t=t, | |
| clip_denoised=False, | |
| )["output"] | |
| if self.loss_type == LossType.RESCALED_MSE: | |
| # Divide by 1000 for equivalence with initial implementation. | |
| # Without a factor of 1/1000, the VB term hurts the MSE term. | |
| terms["vb"] *= self.num_timesteps / 1000.0 | |
| if self.model_mean_type == ModelMeanType.PREVIOUS_X: | |
| target = self.q_posterior_mean_variance(x_start=x_start, x_t=x_t, t=t)[0] | |
| x_start_pred = torch.zeros(x_start) # Not supported. | |
| elif self.model_mean_type == ModelMeanType.START_X: | |
| target = x_start | |
| x_start_pred = model_output | |
| elif self.model_mean_type == ModelMeanType.EPSILON: | |
| target = noise | |
| x_start_pred = self._predict_xstart_from_eps(x_t, t, model_output) | |
| else: | |
| raise NotImplementedError(self.model_mean_type) | |
| assert model_output.shape == target.shape == x_start.shape | |
| terms["mse"] = mean_flat((target - model_output) ** 2) | |
| terms["x_start_predicted"] = x_start_pred | |
| if "vb" in terms: | |
| terms["loss"] = terms["mse"] + terms["vb"] | |
| else: | |
| terms["loss"] = terms["mse"] | |
| else: | |
| raise NotImplementedError(self.loss_type) | |
| return terms | |
| def _prior_bpd(self, x_start): | |
| """ | |
| Get the prior KL term for the variational lower-bound, measured in | |
| bits-per-dim. | |
| This term can't be optimized, as it only depends on the encoder. | |
| :param x_start: the [N x C x ...] tensor of inputs. | |
| :return: a batch of [N] KL values (in bits), one per batch element. | |
| """ | |
| batch_size = x_start.shape[0] | |
| t = th.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device) | |
| qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t) | |
| kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0) | |
| return mean_flat(kl_prior) / np.log(2.0) | |
| def calc_bpd_loop(self, model, x_start, clip_denoised=True, model_kwargs=None): | |
| """ | |
| Compute the entire variational lower-bound, measured in bits-per-dim, | |
| as well as other related quantities. | |
| :param model: the model to evaluate loss on. | |
| :param x_start: the [N x C x ...] tensor of inputs. | |
| :param clip_denoised: if True, clip denoised samples. | |
| :param model_kwargs: if not None, a dict of extra keyword arguments to | |
| pass to the model. This can be used for conditioning. | |
| :return: a dict containing the following keys: | |
| - total_bpd: the total variational lower-bound, per batch element. | |
| - prior_bpd: the prior term in the lower-bound. | |
| - vb: an [N x T] tensor of terms in the lower-bound. | |
| - xstart_mse: an [N x T] tensor of x_0 MSEs for each timestep. | |
| - mse: an [N x T] tensor of epsilon MSEs for each timestep. | |
| """ | |
| device = x_start.device | |
| batch_size = x_start.shape[0] | |
| vb = [] | |
| xstart_mse = [] | |
| mse = [] | |
| for t in list(range(self.num_timesteps))[::-1]: | |
| t_batch = th.tensor([t] * batch_size, device=device) | |
| noise = th.randn_like(x_start) | |
| x_t = self.q_sample(x_start=x_start, t=t_batch, noise=noise) | |
| # Calculate VLB term at the current timestep | |
| with th.no_grad(): | |
| out = self._vb_terms_bpd( | |
| model, | |
| x_start=x_start, | |
| x_t=x_t, | |
| t=t_batch, | |
| clip_denoised=clip_denoised, | |
| model_kwargs=model_kwargs, | |
| ) | |
| vb.append(out["output"]) | |
| xstart_mse.append(mean_flat((out["pred_xstart"] - x_start) ** 2)) | |
| eps = self._predict_eps_from_xstart(x_t, t_batch, out["pred_xstart"]) | |
| mse.append(mean_flat((eps - noise) ** 2)) | |
| vb = th.stack(vb, dim=1) | |
| xstart_mse = th.stack(xstart_mse, dim=1) | |
| mse = th.stack(mse, dim=1) | |
| prior_bpd = self._prior_bpd(x_start) | |
| total_bpd = vb.sum(dim=1) + prior_bpd | |
| return { | |
| "total_bpd": total_bpd, | |
| "prior_bpd": prior_bpd, | |
| "vb": vb, | |
| "xstart_mse": xstart_mse, | |
| "mse": mse, | |
| } | |
| class SpacedDiffusion(GaussianDiffusion): | |
| """ | |
| A diffusion process which can skip steps in a base diffusion process. | |
| :param use_timesteps: a collection (sequence or set) of timesteps from the | |
| original diffusion process to retain. | |
| :param kwargs: the kwargs to create the base diffusion process. | |
| """ | |
| def __init__(self, use_timesteps, **kwargs): | |
| self.use_timesteps = set(use_timesteps) | |
| self.timestep_map = [] | |
| self.original_num_steps = len(kwargs["betas"]) | |
| base_diffusion = GaussianDiffusion(**kwargs) # pylint: disable=missing-kwoa | |
| last_alpha_cumprod = 1.0 | |
| new_betas = [] | |
| for i, alpha_cumprod in enumerate(base_diffusion.alphas_cumprod): | |
| if i in self.use_timesteps: | |
| new_betas.append(1 - alpha_cumprod / last_alpha_cumprod) | |
| last_alpha_cumprod = alpha_cumprod | |
| self.timestep_map.append(i) | |
| kwargs["betas"] = np.array(new_betas) | |
| super().__init__(**kwargs) | |
| def p_mean_variance(self, model, *args, **kwargs): # pylint: disable=signature-differs | |
| return super().p_mean_variance(self._wrap_model(model), *args, **kwargs) | |
| def training_losses(self, model, *args, **kwargs): # pylint: disable=signature-differs | |
| return super().training_losses(self._wrap_model(model), *args, **kwargs) | |
| def autoregressive_training_losses(self, model, *args, **kwargs): # pylint: disable=signature-differs | |
| return super().autoregressive_training_losses(self._wrap_model(model, True), *args, **kwargs) | |
| def condition_mean(self, cond_fn, *args, **kwargs): | |
| return super().condition_mean(self._wrap_model(cond_fn), *args, **kwargs) | |
| def condition_score(self, cond_fn, *args, **kwargs): | |
| return super().condition_score(self._wrap_model(cond_fn), *args, **kwargs) | |
| def _wrap_model(self, model, autoregressive=False): | |
| if isinstance(model, _WrappedModel) or isinstance(model, _WrappedAutoregressiveModel): | |
| return model | |
| mod = _WrappedAutoregressiveModel if autoregressive else _WrappedModel | |
| return mod(model, self.timestep_map, self.rescale_timesteps, self.original_num_steps) | |
| def _scale_timesteps(self, t): | |
| # Scaling is done by the wrapped model. | |
| return t | |
| def space_timesteps(num_timesteps, section_counts): | |
| """ | |
| Create a list of timesteps to use from an original diffusion process, | |
| given the number of timesteps we want to take from equally-sized portions | |
| of the original process. | |
| For example, if there's 300 timesteps and the section counts are [10,15,20] | |
| then the first 100 timesteps are strided to be 10 timesteps, the second 100 | |
| are strided to be 15 timesteps, and the final 100 are strided to be 20. | |
| If the stride is a string starting with "ddim", then the fixed striding | |
| from the DDIM paper is used, and only one section is allowed. | |
| :param num_timesteps: the number of diffusion steps in the original | |
| process to divide up. | |
| :param section_counts: either a list of numbers, or a string containing | |
| comma-separated numbers, indicating the step count | |
| per section. As a special case, use "ddimN" where N | |
| is a number of steps to use the striding from the | |
| DDIM paper. | |
| :return: a set of diffusion steps from the original process to use. | |
| """ | |
| if isinstance(section_counts, str): | |
| if section_counts.startswith("ddim"): | |
| desired_count = int(section_counts[len("ddim") :]) | |
| for i in range(1, num_timesteps): | |
| if len(range(0, num_timesteps, i)) == desired_count: | |
| return set(range(0, num_timesteps, i)) | |
| raise ValueError(f"cannot create exactly {num_timesteps} steps with an integer stride") | |
| section_counts = [int(x) for x in section_counts.split(",")] | |
| size_per = num_timesteps // len(section_counts) | |
| extra = num_timesteps % len(section_counts) | |
| start_idx = 0 | |
| all_steps = [] | |
| for i, section_count in enumerate(section_counts): | |
| size = size_per + (1 if i < extra else 0) | |
| if size < section_count: | |
| raise ValueError(f"cannot divide section of {size} steps into {section_count}") | |
| if section_count <= 1: | |
| frac_stride = 1 | |
| else: | |
| frac_stride = (size - 1) / (section_count - 1) | |
| cur_idx = 0.0 | |
| taken_steps = [] | |
| for _ in range(section_count): | |
| taken_steps.append(start_idx + round(cur_idx)) | |
| cur_idx += frac_stride | |
| all_steps += taken_steps | |
| start_idx += size | |
| return set(all_steps) | |
| class _WrappedModel: | |
| def __init__(self, model, timestep_map, rescale_timesteps, original_num_steps): | |
| self.model = model | |
| self.timestep_map = timestep_map | |
| self.rescale_timesteps = rescale_timesteps | |
| self.original_num_steps = original_num_steps | |
| def __call__(self, x, ts, **kwargs): | |
| map_tensor = th.tensor(self.timestep_map, device=ts.device, dtype=ts.dtype) | |
| new_ts = map_tensor[ts] | |
| if self.rescale_timesteps: | |
| new_ts = new_ts.float() * (1000.0 / self.original_num_steps) | |
| model_output = self.model(x, new_ts, **kwargs) | |
| return model_output | |
| class _WrappedAutoregressiveModel: | |
| def __init__(self, model, timestep_map, rescale_timesteps, original_num_steps): | |
| self.model = model | |
| self.timestep_map = timestep_map | |
| self.rescale_timesteps = rescale_timesteps | |
| self.original_num_steps = original_num_steps | |
| def __call__(self, x, x0, ts, **kwargs): | |
| map_tensor = th.tensor(self.timestep_map, device=ts.device, dtype=ts.dtype) | |
| new_ts = map_tensor[ts] | |
| if self.rescale_timesteps: | |
| new_ts = new_ts.float() * (1000.0 / self.original_num_steps) | |
| return self.model(x, x0, new_ts, **kwargs) | |
| def _extract_into_tensor(arr, timesteps, broadcast_shape): | |
| """ | |
| Extract values from a 1-D numpy array for a batch of indices. | |
| :param arr: the 1-D numpy array. | |
| :param timesteps: a tensor of indices into the array to extract. | |
| :param broadcast_shape: a larger shape of K dimensions with the batch | |
| dimension equal to the length of timesteps. | |
| :return: a tensor of shape [batch_size, 1, ...] where the shape has K dims. | |
| """ | |
| res = th.from_numpy(arr).to(device=timesteps.device)[timesteps].float() | |
| while len(res.shape) < len(broadcast_shape): | |
| res = res[..., None] | |
| return res.expand(broadcast_shape) | |