Spaces:
Runtime error
Runtime error
first commit
Browse files- README.md +26 -1
- app.py +70 -0
- packages.txt +8 -0
- requirements.txt +5 -0
README.md
CHANGED
|
@@ -8,5 +8,30 @@ sdk_version: 4.31.4
|
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
---
|
|
|
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
---
|
| 11 |
+
# Scrape and Summarize Web Content with AI
|
| 12 |
|
| 13 |
+
## Overview
|
| 14 |
+
|
| 15 |
+
This project provides an easy way to scrape and summarize web content using advanced AI models hosted on Hugging Face. It leverages the capabilities of ScrapeGraphAI and integrates a user-friendly interface with Gradio. The project allows users to input a prompt and a source URL to obtain summarized web content without writing any code.
|
| 16 |
+
|
| 17 |
+
## Features
|
| 18 |
+
|
| 19 |
+
- **No-code interface**: Easily scrape and summarize web content.
|
| 20 |
+
- **Advanced AI models**: Utilizes Hugging Face models for language processing and embeddings.
|
| 21 |
+
- **Gradio integration**: User-friendly interface to interact with the models.
|
| 22 |
+
- **Customizable**: Change models and configurations as needed. (coming soon)
|
| 23 |
+
|
| 24 |
+
## Configuration
|
| 25 |
+
|
| 26 |
+
- **Models**:
|
| 27 |
+
- The project uses `Mistral-7B-Instruct-v0.2` for the language model and `sentence-transformers/all-MiniLM-l6-v2` for embeddings.
|
| 28 |
+
|
| 29 |
+
## Contributing
|
| 30 |
+
|
| 31 |
+
Contributions are welcome! Please submit pull requests or open issues to suggest improvements.
|
| 32 |
+
|
| 33 |
+
## Acknowledgements
|
| 34 |
+
|
| 35 |
+
- [ScrapeGraphAI](https://github.com/VinciGit00/Scrapegraph-ai)
|
| 36 |
+
- [Hugging Face](https://huggingface.co/)
|
| 37 |
+
- [Gradio](https://gradio.app/)
|
app.py
ADDED
|
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from dotenv import load_dotenv
|
| 3 |
+
from scrapegraphai.graphs import SmartScraperGraph
|
| 4 |
+
from scrapegraphai.utils import prettify_exec_info
|
| 5 |
+
from langchain_community.llms import HuggingFaceEndpoint
|
| 6 |
+
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
|
| 7 |
+
import gradio as gr
|
| 8 |
+
import subprocess
|
| 9 |
+
|
| 10 |
+
# Ensure Playwright installs required browsers and dependencies
|
| 11 |
+
subprocess.run(["playwright", "install"])
|
| 12 |
+
#subprocess.run(["playwright", "install-deps"])
|
| 13 |
+
|
| 14 |
+
# Load environment variables
|
| 15 |
+
load_dotenv()
|
| 16 |
+
HUGGINGFACEHUB_API_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN')
|
| 17 |
+
|
| 18 |
+
# Initialize the model instances
|
| 19 |
+
repo_id = "mistralai/Mistral-7B-Instruct-v0.2"
|
| 20 |
+
llm_model_instance = HuggingFaceEndpoint(
|
| 21 |
+
repo_id=repo_id, max_length=128, temperature=0.5, token=HUGGINGFACEHUB_API_TOKEN
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
embedder_model_instance = HuggingFaceInferenceAPIEmbeddings(
|
| 25 |
+
api_key=HUGGINGFACEHUB_API_TOKEN, model_name="sentence-transformers/all-MiniLM-l6-v2"
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
graph_config = {
|
| 29 |
+
"llm": {"model_instance": llm_model_instance},
|
| 30 |
+
"embeddings": {"model_instance": embedder_model_instance}
|
| 31 |
+
}
|
| 32 |
+
|
| 33 |
+
def scrape_and_summarize(prompt, source):
|
| 34 |
+
smart_scraper_graph = SmartScraperGraph(
|
| 35 |
+
prompt=prompt,
|
| 36 |
+
source=source,
|
| 37 |
+
config=graph_config
|
| 38 |
+
)
|
| 39 |
+
result = smart_scraper_graph.run()
|
| 40 |
+
exec_info = smart_scraper_graph.get_execution_info()
|
| 41 |
+
return result, prettify_exec_info(exec_info)
|
| 42 |
+
|
| 43 |
+
# Gradio interface
|
| 44 |
+
with gr.Blocks() as demo:
|
| 45 |
+
gr.Markdown("# Scrape websites, no-code version")
|
| 46 |
+
gr.Markdown("""Easily scrape and summarize web content using advanced AI models on the Hugging Face Hub without writing any code. Input your desired prompt and source URL to get started.
|
| 47 |
+
This is a no-code version of the excellent lib [ScrapeGraphAI](https://github.com/VinciGit00/Scrapegraph-ai).
|
| 48 |
+
It's a basic demo and a work in progress. Please contribute to it to make it more useful!""")
|
| 49 |
+
|
| 50 |
+
with gr.Row():
|
| 51 |
+
with gr.Column():
|
| 52 |
+
|
| 53 |
+
model_dropdown = gr.Textbox(label="Model", value="Mistral-7B-Instruct-v0.2")
|
| 54 |
+
prompt_input = gr.Textbox(label="Prompt", value="List me all the press releases with their headlines and urls.")
|
| 55 |
+
source_input = gr.Textbox(label="Source URL", value="https://www.whitehouse.gov/")
|
| 56 |
+
scrape_button = gr.Button("Scrape and Summarize")
|
| 57 |
+
|
| 58 |
+
with gr.Column():
|
| 59 |
+
result_output = gr.Textbox(label="Result")
|
| 60 |
+
exec_info_output = gr.Textbox(label="Execution Info")
|
| 61 |
+
|
| 62 |
+
scrape_button.click(
|
| 63 |
+
scrape_and_summarize,
|
| 64 |
+
inputs=[prompt_input, source_input],
|
| 65 |
+
outputs=[result_output, exec_info_output]
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
# Launch the Gradio app
|
| 69 |
+
if __name__ == "__main__":
|
| 70 |
+
demo.launch()
|
packages.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
libnss3
|
| 2 |
+
libnspr4
|
| 3 |
+
libatk1.0-0
|
| 4 |
+
libatk-bridge2.0-0
|
| 5 |
+
libcups2
|
| 6 |
+
libatspi2.0-0
|
| 7 |
+
libxcomposite1
|
| 8 |
+
libxdamage1
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio==4.31.3
|
| 2 |
+
langchain_community==0.0.38
|
| 3 |
+
python-dotenv==1.0.1
|
| 4 |
+
scrapegraphai==1.2.3
|
| 5 |
+
playwright==1.43.0
|