File size: 3,338 Bytes
			
			| a277bb8 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 | import json
import torch
import torch.nn as nn
def match_name_keywords(n: str, name_keywords: list):
    out = False
    for b in name_keywords:
        if b in n:
            out = True
            break
    return out
def get_param_dict(args, model_without_ddp: nn.Module):
    try:
        param_dict_type = args.param_dict_type
    except:
        param_dict_type = 'default'
    assert param_dict_type in ['default', 'ddetr_in_mmdet', 'large_wd']
    # by default
    # import pdb;pdb.set_trace()
    if param_dict_type == 'default':
        param_dicts = [
            {"params": [p for n, p in model_without_ddp.named_parameters() if "backbone" not in n and p.requires_grad]},
            {
                "params": [p for n, p in model_without_ddp.named_parameters() if "backbone" in n and p.requires_grad],
                "lr": args.lr_backbone,
            }
        ]
        return param_dicts
    if param_dict_type == 'ddetr_in_mmdet':
        param_dicts = [
            {
                "params":
                    [p for n, p in model_without_ddp.named_parameters()
                        if not match_name_keywords(n, args.lr_backbone_names) and not match_name_keywords(n, args.lr_linear_proj_names) and p.requires_grad],
                "lr": args.lr,
            },
            {
                "params": [p for n, p in model_without_ddp.named_parameters() 
                        if match_name_keywords(n, args.lr_backbone_names) and p.requires_grad],
                "lr": args.lr_backbone,
            },
            {
                "params": [p for n, p in model_without_ddp.named_parameters() 
                        if match_name_keywords(n, args.lr_linear_proj_names) and p.requires_grad],
                "lr": args.lr_linear_proj_mult,
            }
        ]        
        return param_dicts
    if param_dict_type == 'large_wd':
        param_dicts = [
                {
                    "params":
                        [p for n, p in model_without_ddp.named_parameters()
                            if not match_name_keywords(n, ['backbone']) and not match_name_keywords(n, ['norm', 'bias']) and p.requires_grad],
                },
                {
                    "params": [p for n, p in model_without_ddp.named_parameters() 
                            if match_name_keywords(n, ['backbone']) and match_name_keywords(n, ['norm', 'bias']) and p.requires_grad],
                    "lr": args.lr_backbone,
                    "weight_decay": 0.0,
                },
                {
                    "params": [p for n, p in model_without_ddp.named_parameters() 
                            if match_name_keywords(n, ['backbone']) and not match_name_keywords(n, ['norm', 'bias']) and p.requires_grad],
                    "lr": args.lr_backbone,
                    "weight_decay": args.weight_decay,
                },
                {
                    "params":
                        [p for n, p in model_without_ddp.named_parameters()
                            if not match_name_keywords(n, ['backbone']) and match_name_keywords(n, ['norm', 'bias']) and p.requires_grad],
                    "lr": args.lr,
                    "weight_decay": 0.0,
                }
            ]
        # print("param_dicts: {}".format(param_dicts))
    return param_dicts | 
