|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  | DETR Transformer class. | 
					
						
						|  |  | 
					
						
						|  | Copy-paste from torch.nn.Transformer with modifications: | 
					
						
						|  | * positional encodings are passed in MHattention | 
					
						
						|  | * extra LN at the end of encoder is removed | 
					
						
						|  | * decoder returns a stack of activations from all decoding layers | 
					
						
						|  | """ | 
					
						
						|  | from typing import Optional | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | import torch.nn.functional as F | 
					
						
						|  | from torch import Tensor, nn | 
					
						
						|  |  | 
					
						
						|  | from .utils import ( | 
					
						
						|  | MLP, | 
					
						
						|  | _get_activation_fn, | 
					
						
						|  | _get_clones, | 
					
						
						|  | gen_encoder_output_proposals, | 
					
						
						|  | gen_sineembed_for_position, | 
					
						
						|  | sigmoid_focal_loss, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class TextTransformer(nn.Module): | 
					
						
						|  | def __init__(self, num_layers, d_model=256, nheads=8, dim_feedforward=2048, dropout=0.1): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.num_layers = num_layers | 
					
						
						|  | self.d_model = d_model | 
					
						
						|  | self.nheads = nheads | 
					
						
						|  | self.dim_feedforward = dim_feedforward | 
					
						
						|  | self.norm = None | 
					
						
						|  |  | 
					
						
						|  | single_encoder_layer = TransformerEncoderLayer( | 
					
						
						|  | d_model=d_model, nhead=nheads, dim_feedforward=dim_feedforward, dropout=dropout | 
					
						
						|  | ) | 
					
						
						|  | self.layers = _get_clones(single_encoder_layer, num_layers) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, memory_text: torch.Tensor, text_attention_mask: torch.Tensor): | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | text_attention_mask: bs, num_token | 
					
						
						|  | memory_text: bs, num_token, d_model | 
					
						
						|  |  | 
					
						
						|  | Raises: | 
					
						
						|  | RuntimeError: _description_ | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | output: bs, num_token, d_model | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | output = memory_text.transpose(0, 1) | 
					
						
						|  |  | 
					
						
						|  | for layer in self.layers: | 
					
						
						|  | output = layer(output, src_key_padding_mask=text_attention_mask) | 
					
						
						|  |  | 
					
						
						|  | if self.norm is not None: | 
					
						
						|  | output = self.norm(output) | 
					
						
						|  |  | 
					
						
						|  | return output.transpose(0, 1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class TransformerEncoderLayer(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | d_model, | 
					
						
						|  | nhead, | 
					
						
						|  | dim_feedforward=2048, | 
					
						
						|  | dropout=0.1, | 
					
						
						|  | activation="relu", | 
					
						
						|  | normalize_before=False, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) | 
					
						
						|  |  | 
					
						
						|  | self.linear1 = nn.Linear(d_model, dim_feedforward) | 
					
						
						|  | self.dropout = nn.Dropout(dropout) | 
					
						
						|  | self.linear2 = nn.Linear(dim_feedforward, d_model) | 
					
						
						|  |  | 
					
						
						|  | self.norm1 = nn.LayerNorm(d_model) | 
					
						
						|  | self.norm2 = nn.LayerNorm(d_model) | 
					
						
						|  | self.dropout1 = nn.Dropout(dropout) | 
					
						
						|  | self.dropout2 = nn.Dropout(dropout) | 
					
						
						|  |  | 
					
						
						|  | self.activation = _get_activation_fn(activation) | 
					
						
						|  | self.normalize_before = normalize_before | 
					
						
						|  | self.nhead = nhead | 
					
						
						|  |  | 
					
						
						|  | def with_pos_embed(self, tensor, pos: Optional[Tensor]): | 
					
						
						|  | return tensor if pos is None else tensor + pos | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | src, | 
					
						
						|  | src_mask: Optional[Tensor] = None, | 
					
						
						|  | src_key_padding_mask: Optional[Tensor] = None, | 
					
						
						|  | pos: Optional[Tensor] = None, | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  | if src_mask.dim() == 3 and src_mask.shape[0] == src.shape[1]: | 
					
						
						|  |  | 
					
						
						|  | src_mask = src_mask.repeat(self.nhead, 1, 1) | 
					
						
						|  |  | 
					
						
						|  | q = k = self.with_pos_embed(src, pos) | 
					
						
						|  |  | 
					
						
						|  | src2 = self.self_attn(q, k, value=src, attn_mask=src_mask)[0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | src = src + self.dropout1(src2) | 
					
						
						|  | src = self.norm1(src) | 
					
						
						|  | src2 = self.linear2(self.dropout(self.activation(self.linear1(src)))) | 
					
						
						|  | src = src + self.dropout2(src2) | 
					
						
						|  | src = self.norm2(src) | 
					
						
						|  | return src | 
					
						
						|  |  |