Spaces:
				
			
			
	
			
			
		Build error
		
	
	
	
			
			
	
	
	
	
		
		
		Build error
		
	File size: 7,319 Bytes
			
			| a80d6bb | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 | from loguru import logger
import torch
import torch.nn as nn
def sample_non_matches(pos_mask, match_ids=None, sampling_ratio=10):
    # assert (pos_mask.shape == mask.shape) # [B, H*W, H*W]
    if match_ids is not None:
        HW = pos_mask.shape[1]
        b_ids, i_ids, j_ids = match_ids
        if len(b_ids) == 0:
            return ~pos_mask
        neg_mask = torch.zeros_like(pos_mask)
        probs = torch.ones((HW - 1)//3, device=pos_mask.device)
        for _ in range(sampling_ratio):
            d = torch.multinomial(probs, len(j_ids), replacement=True)
            sampled_j_ids = (j_ids + d*3 + 1) % HW
            neg_mask[b_ids, i_ids, sampled_j_ids] = True
        # neg_mask = neg_matrix == 1
    else:
        neg_mask = ~pos_mask
    return neg_mask
class TopicFMLoss(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config  # config under the global namespace
        self.loss_config = config['model']['loss']
        self.match_type = self.config['model']['match_coarse']['match_type']
        
        # coarse-level
        self.correct_thr = self.loss_config['fine_correct_thr']
        self.c_pos_w = self.loss_config['pos_weight']
        self.c_neg_w = self.loss_config['neg_weight']
        # fine-level
        self.fine_type = self.loss_config['fine_type']
    def compute_coarse_loss(self, conf, topic_mat, conf_gt, match_ids=None, weight=None):
        """ Point-wise CE / Focal Loss with 0 / 1 confidence as gt.
        Args:
            conf (torch.Tensor): (N, HW0, HW1) / (N, HW0+1, HW1+1)
            conf_gt (torch.Tensor): (N, HW0, HW1)
            weight (torch.Tensor): (N, HW0, HW1)
        """
        pos_mask = conf_gt == 1
        neg_mask = sample_non_matches(pos_mask, match_ids=match_ids)
        c_pos_w, c_neg_w = self.c_pos_w, self.c_neg_w
        # corner case: no gt coarse-level match at all
        if not pos_mask.any():  # assign a wrong gt
            pos_mask[0, 0, 0] = True
            if weight is not None:
                weight[0, 0, 0] = 0.
            c_pos_w = 0.
        if not neg_mask.any():
            neg_mask[0, 0, 0] = True
            if weight is not None:
                weight[0, 0, 0] = 0.
            c_neg_w = 0.
        conf = torch.clamp(conf, 1e-6, 1 - 1e-6)
        alpha = self.loss_config['focal_alpha']
        loss = 0.0
        if isinstance(topic_mat, torch.Tensor):
            pos_topic = topic_mat[pos_mask]
            loss_pos_topic = - alpha * (pos_topic + 1e-6).log()
            neg_topic = topic_mat[neg_mask]
            loss_neg_topic = - alpha * (1 - neg_topic + 1e-6).log()
            if weight is not None:
                loss_pos_topic = loss_pos_topic * weight[pos_mask]
                loss_neg_topic = loss_neg_topic * weight[neg_mask]
            loss = loss_pos_topic.mean() + loss_neg_topic.mean()
        pos_conf = conf[pos_mask]
        loss_pos = - alpha * pos_conf.log()
        # handle loss weights
        if weight is not None:
            # Different from dense-spvs, the loss w.r.t. padded regions aren't directly zeroed out,
            # but only through manually setting corresponding regions in sim_matrix to '-inf'.
            loss_pos = loss_pos * weight[pos_mask]
        loss = loss + c_pos_w * loss_pos.mean()
        return loss
        
    def compute_fine_loss(self, expec_f, expec_f_gt):
        if self.fine_type == 'l2_with_std':
            return self._compute_fine_loss_l2_std(expec_f, expec_f_gt)
        elif self.fine_type == 'l2':
            return self._compute_fine_loss_l2(expec_f, expec_f_gt)
        else:
            raise NotImplementedError()
    def _compute_fine_loss_l2(self, expec_f, expec_f_gt):
        """
        Args:
            expec_f (torch.Tensor): [M, 2] <x, y>
            expec_f_gt (torch.Tensor): [M, 2] <x, y>
        """
        correct_mask = torch.linalg.norm(expec_f_gt, ord=float('inf'), dim=1) < self.correct_thr
        if correct_mask.sum() == 0:
            if self.training:  # this seldomly happen when training, since we pad prediction with gt
                logger.warning("assign a false supervision to avoid ddp deadlock")
                correct_mask[0] = True
            else:
                return None
        offset_l2 = ((expec_f_gt[correct_mask] - expec_f[correct_mask]) ** 2).sum(-1)
        return offset_l2.mean()
    def _compute_fine_loss_l2_std(self, expec_f, expec_f_gt):
        """
        Args:
            expec_f (torch.Tensor): [M, 3] <x, y, std>
            expec_f_gt (torch.Tensor): [M, 2] <x, y>
        """
        # correct_mask tells you which pair to compute fine-loss
        correct_mask = torch.linalg.norm(expec_f_gt, ord=float('inf'), dim=1) < self.correct_thr
        # use std as weight that measures uncertainty
        std = expec_f[:, 2]
        inverse_std = 1. / torch.clamp(std, min=1e-10)
        weight = (inverse_std / torch.mean(inverse_std)).detach()  # avoid minizing loss through increase std
        # corner case: no correct coarse match found
        if not correct_mask.any():
            if self.training:  # this seldomly happen during training, since we pad prediction with gt
                               # sometimes there is not coarse-level gt at all.
                logger.warning("assign a false supervision to avoid ddp deadlock")
                correct_mask[0] = True
                weight[0] = 0.
            else:
                return None
        # l2 loss with std
        offset_l2 = ((expec_f_gt[correct_mask] - expec_f[correct_mask, :2]) ** 2).sum(-1)
        loss = (offset_l2 * weight[correct_mask]).mean()
        return loss
    
    @torch.no_grad()
    def compute_c_weight(self, data):
        """ compute element-wise weights for computing coarse-level loss. """
        if 'mask0' in data:
            c_weight = (data['mask0'].flatten(-2)[..., None] * data['mask1'].flatten(-2)[:, None]).float()
        else:
            c_weight = None
        return c_weight
    def forward(self, data):
        """
        Update:
            data (dict): update{
                'loss': [1] the reduced loss across a batch,
                'loss_scalars' (dict): loss scalars for tensorboard_record
            }
        """
        loss_scalars = {}
        # 0. compute element-wise loss weight
        c_weight = self.compute_c_weight(data)
        # 1. coarse-level loss
        loss_c = self.compute_coarse_loss(data['conf_matrix'], data['topic_matrix'],
            data['conf_matrix_gt'], match_ids=(data['spv_b_ids'], data['spv_i_ids'], data['spv_j_ids']),
            weight=c_weight)
        loss = loss_c * self.loss_config['coarse_weight']
        loss_scalars.update({"loss_c": loss_c.clone().detach().cpu()})
        # 2. fine-level loss
        loss_f = self.compute_fine_loss(data['expec_f'], data['expec_f_gt'])
        if loss_f is not None:
            loss += loss_f * self.loss_config['fine_weight']
            loss_scalars.update({"loss_f":  loss_f.clone().detach().cpu()})
        else:
            assert self.training is False
            loss_scalars.update({'loss_f': torch.tensor(1.)})  # 1 is the upper bound
        loss_scalars.update({'loss': loss.clone().detach().cpu()})
        data.update({"loss": loss, "loss_scalars": loss_scalars})
 | 
 
			
