Spaces:
Build error
Build error
| # Copyright (c) 2018, ETH Zurich and UNC Chapel Hill. | |
| # All rights reserved. | |
| # | |
| # Redistribution and use in source and binary forms, with or without | |
| # modification, are permitted provided that the following conditions are met: | |
| # | |
| # * Redistributions of source code must retain the above copyright | |
| # notice, this list of conditions and the following disclaimer. | |
| # | |
| # * Redistributions in binary form must reproduce the above copyright | |
| # notice, this list of conditions and the following disclaimer in the | |
| # documentation and/or other materials provided with the distribution. | |
| # | |
| # * Neither the name of ETH Zurich and UNC Chapel Hill nor the names of | |
| # its contributors may be used to endorse or promote products derived | |
| # from this software without specific prior written permission. | |
| # | |
| # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |
| # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
| # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
| # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE | |
| # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | |
| # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | |
| # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | |
| # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | |
| # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | |
| # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | |
| # POSSIBILITY OF SUCH DAMAGE. | |
| # | |
| # Author: Johannes L. Schoenberger (jsch-at-demuc-dot-de) | |
| import os | |
| import collections | |
| import numpy as np | |
| import struct | |
| import argparse | |
| import logging | |
| logger = logging.getLogger(__name__) | |
| CameraModel = collections.namedtuple( | |
| "CameraModel", ["model_id", "model_name", "num_params"] | |
| ) | |
| Camera = collections.namedtuple( | |
| "Camera", ["id", "model", "width", "height", "params"] | |
| ) | |
| BaseImage = collections.namedtuple( | |
| "Image", ["id", "qvec", "tvec", "camera_id", "name", "xys", "point3D_ids"] | |
| ) | |
| Point3D = collections.namedtuple( | |
| "Point3D", ["id", "xyz", "rgb", "error", "image_ids", "point2D_idxs"] | |
| ) | |
| class Image(BaseImage): | |
| def qvec2rotmat(self): | |
| return qvec2rotmat(self.qvec) | |
| CAMERA_MODELS = { | |
| CameraModel(model_id=0, model_name="SIMPLE_PINHOLE", num_params=3), | |
| CameraModel(model_id=1, model_name="PINHOLE", num_params=4), | |
| CameraModel(model_id=2, model_name="SIMPLE_RADIAL", num_params=4), | |
| CameraModel(model_id=3, model_name="RADIAL", num_params=5), | |
| CameraModel(model_id=4, model_name="OPENCV", num_params=8), | |
| CameraModel(model_id=5, model_name="OPENCV_FISHEYE", num_params=8), | |
| CameraModel(model_id=6, model_name="FULL_OPENCV", num_params=12), | |
| CameraModel(model_id=7, model_name="FOV", num_params=5), | |
| CameraModel(model_id=8, model_name="SIMPLE_RADIAL_FISHEYE", num_params=4), | |
| CameraModel(model_id=9, model_name="RADIAL_FISHEYE", num_params=5), | |
| CameraModel(model_id=10, model_name="THIN_PRISM_FISHEYE", num_params=12), | |
| } | |
| CAMERA_MODEL_IDS = dict( | |
| [(camera_model.model_id, camera_model) for camera_model in CAMERA_MODELS] | |
| ) | |
| CAMERA_MODEL_NAMES = dict( | |
| [(camera_model.model_name, camera_model) for camera_model in CAMERA_MODELS] | |
| ) | |
| def read_next_bytes(fid, num_bytes, format_char_sequence, endian_character="<"): | |
| """Read and unpack the next bytes from a binary file. | |
| :param fid: | |
| :param num_bytes: Sum of combination of {2, 4, 8}, e.g. 2, 6, 16, 30, etc. | |
| :param format_char_sequence: List of {c, e, f, d, h, H, i, I, l, L, q, Q}. | |
| :param endian_character: Any of {@, =, <, >, !} | |
| :return: Tuple of read and unpacked values. | |
| """ | |
| data = fid.read(num_bytes) | |
| return struct.unpack(endian_character + format_char_sequence, data) | |
| def write_next_bytes(fid, data, format_char_sequence, endian_character="<"): | |
| """pack and write to a binary file. | |
| :param fid: | |
| :param data: data to send, if multiple elements are sent at the same time, | |
| they should be encapsuled either in a list or a tuple | |
| :param format_char_sequence: List of {c, e, f, d, h, H, i, I, l, L, q, Q}. | |
| should be the same length as the data list or tuple | |
| :param endian_character: Any of {@, =, <, >, !} | |
| """ | |
| if isinstance(data, (list, tuple)): | |
| bytes = struct.pack(endian_character + format_char_sequence, *data) | |
| else: | |
| bytes = struct.pack(endian_character + format_char_sequence, data) | |
| fid.write(bytes) | |
| def read_cameras_text(path): | |
| """ | |
| see: src/base/reconstruction.cc | |
| void Reconstruction::WriteCamerasText(const std::string& path) | |
| void Reconstruction::ReadCamerasText(const std::string& path) | |
| """ | |
| cameras = {} | |
| with open(path, "r") as fid: | |
| while True: | |
| line = fid.readline() | |
| if not line: | |
| break | |
| line = line.strip() | |
| if len(line) > 0 and line[0] != "#": | |
| elems = line.split() | |
| camera_id = int(elems[0]) | |
| model = elems[1] | |
| width = int(elems[2]) | |
| height = int(elems[3]) | |
| params = np.array(tuple(map(float, elems[4:]))) | |
| cameras[camera_id] = Camera( | |
| id=camera_id, | |
| model=model, | |
| width=width, | |
| height=height, | |
| params=params, | |
| ) | |
| return cameras | |
| def read_cameras_binary(path_to_model_file): | |
| """ | |
| see: src/base/reconstruction.cc | |
| void Reconstruction::WriteCamerasBinary(const std::string& path) | |
| void Reconstruction::ReadCamerasBinary(const std::string& path) | |
| """ | |
| cameras = {} | |
| with open(path_to_model_file, "rb") as fid: | |
| num_cameras = read_next_bytes(fid, 8, "Q")[0] | |
| for _ in range(num_cameras): | |
| camera_properties = read_next_bytes( | |
| fid, num_bytes=24, format_char_sequence="iiQQ" | |
| ) | |
| camera_id = camera_properties[0] | |
| model_id = camera_properties[1] | |
| model_name = CAMERA_MODEL_IDS[camera_properties[1]].model_name | |
| width = camera_properties[2] | |
| height = camera_properties[3] | |
| num_params = CAMERA_MODEL_IDS[model_id].num_params | |
| params = read_next_bytes( | |
| fid, | |
| num_bytes=8 * num_params, | |
| format_char_sequence="d" * num_params, | |
| ) | |
| cameras[camera_id] = Camera( | |
| id=camera_id, | |
| model=model_name, | |
| width=width, | |
| height=height, | |
| params=np.array(params), | |
| ) | |
| assert len(cameras) == num_cameras | |
| return cameras | |
| def write_cameras_text(cameras, path): | |
| """ | |
| see: src/base/reconstruction.cc | |
| void Reconstruction::WriteCamerasText(const std::string& path) | |
| void Reconstruction::ReadCamerasText(const std::string& path) | |
| """ | |
| HEADER = ( | |
| "# Camera list with one line of data per camera:\n" | |
| + "# CAMERA_ID, MODEL, WIDTH, HEIGHT, PARAMS[]\n" | |
| + "# Number of cameras: {}\n".format(len(cameras)) | |
| ) | |
| with open(path, "w") as fid: | |
| fid.write(HEADER) | |
| for _, cam in cameras.items(): | |
| to_write = [cam.id, cam.model, cam.width, cam.height, *cam.params] | |
| line = " ".join([str(elem) for elem in to_write]) | |
| fid.write(line + "\n") | |
| def write_cameras_binary(cameras, path_to_model_file): | |
| """ | |
| see: src/base/reconstruction.cc | |
| void Reconstruction::WriteCamerasBinary(const std::string& path) | |
| void Reconstruction::ReadCamerasBinary(const std::string& path) | |
| """ | |
| with open(path_to_model_file, "wb") as fid: | |
| write_next_bytes(fid, len(cameras), "Q") | |
| for _, cam in cameras.items(): | |
| model_id = CAMERA_MODEL_NAMES[cam.model].model_id | |
| camera_properties = [cam.id, model_id, cam.width, cam.height] | |
| write_next_bytes(fid, camera_properties, "iiQQ") | |
| for p in cam.params: | |
| write_next_bytes(fid, float(p), "d") | |
| return cameras | |
| def read_images_text(path): | |
| """ | |
| see: src/base/reconstruction.cc | |
| void Reconstruction::ReadImagesText(const std::string& path) | |
| void Reconstruction::WriteImagesText(const std::string& path) | |
| """ | |
| images = {} | |
| with open(path, "r") as fid: | |
| while True: | |
| line = fid.readline() | |
| if not line: | |
| break | |
| line = line.strip() | |
| if len(line) > 0 and line[0] != "#": | |
| elems = line.split() | |
| image_id = int(elems[0]) | |
| qvec = np.array(tuple(map(float, elems[1:5]))) | |
| tvec = np.array(tuple(map(float, elems[5:8]))) | |
| camera_id = int(elems[8]) | |
| image_name = elems[9] | |
| elems = fid.readline().split() | |
| xys = np.column_stack( | |
| [ | |
| tuple(map(float, elems[0::3])), | |
| tuple(map(float, elems[1::3])), | |
| ] | |
| ) | |
| point3D_ids = np.array(tuple(map(int, elems[2::3]))) | |
| images[image_id] = Image( | |
| id=image_id, | |
| qvec=qvec, | |
| tvec=tvec, | |
| camera_id=camera_id, | |
| name=image_name, | |
| xys=xys, | |
| point3D_ids=point3D_ids, | |
| ) | |
| return images | |
| def read_images_binary(path_to_model_file): | |
| """ | |
| see: src/base/reconstruction.cc | |
| void Reconstruction::ReadImagesBinary(const std::string& path) | |
| void Reconstruction::WriteImagesBinary(const std::string& path) | |
| """ | |
| images = {} | |
| with open(path_to_model_file, "rb") as fid: | |
| num_reg_images = read_next_bytes(fid, 8, "Q")[0] | |
| for _ in range(num_reg_images): | |
| binary_image_properties = read_next_bytes( | |
| fid, num_bytes=64, format_char_sequence="idddddddi" | |
| ) | |
| image_id = binary_image_properties[0] | |
| qvec = np.array(binary_image_properties[1:5]) | |
| tvec = np.array(binary_image_properties[5:8]) | |
| camera_id = binary_image_properties[8] | |
| image_name = "" | |
| current_char = read_next_bytes(fid, 1, "c")[0] | |
| while current_char != b"\x00": # look for the ASCII 0 entry | |
| image_name += current_char.decode("utf-8") | |
| current_char = read_next_bytes(fid, 1, "c")[0] | |
| num_points2D = read_next_bytes( | |
| fid, num_bytes=8, format_char_sequence="Q" | |
| )[0] | |
| x_y_id_s = read_next_bytes( | |
| fid, | |
| num_bytes=24 * num_points2D, | |
| format_char_sequence="ddq" * num_points2D, | |
| ) | |
| xys = np.column_stack( | |
| [ | |
| tuple(map(float, x_y_id_s[0::3])), | |
| tuple(map(float, x_y_id_s[1::3])), | |
| ] | |
| ) | |
| point3D_ids = np.array(tuple(map(int, x_y_id_s[2::3]))) | |
| images[image_id] = Image( | |
| id=image_id, | |
| qvec=qvec, | |
| tvec=tvec, | |
| camera_id=camera_id, | |
| name=image_name, | |
| xys=xys, | |
| point3D_ids=point3D_ids, | |
| ) | |
| return images | |
| def write_images_text(images, path): | |
| """ | |
| see: src/base/reconstruction.cc | |
| void Reconstruction::ReadImagesText(const std::string& path) | |
| void Reconstruction::WriteImagesText(const std::string& path) | |
| """ | |
| if len(images) == 0: | |
| mean_observations = 0 | |
| else: | |
| mean_observations = sum( | |
| (len(img.point3D_ids) for _, img in images.items()) | |
| ) / len(images) | |
| HEADER = ( | |
| "# Image list with two lines of data per image:\n" | |
| + "# IMAGE_ID, QW, QX, QY, QZ, TX, TY, TZ, CAMERA_ID, NAME\n" | |
| + "# POINTS2D[] as (X, Y, POINT3D_ID)\n" | |
| + "# Number of images: {}, mean observations per image: {}\n".format( | |
| len(images), mean_observations | |
| ) | |
| ) | |
| with open(path, "w") as fid: | |
| fid.write(HEADER) | |
| for _, img in images.items(): | |
| image_header = [ | |
| img.id, | |
| *img.qvec, | |
| *img.tvec, | |
| img.camera_id, | |
| img.name, | |
| ] | |
| first_line = " ".join(map(str, image_header)) | |
| fid.write(first_line + "\n") | |
| points_strings = [] | |
| for xy, point3D_id in zip(img.xys, img.point3D_ids): | |
| points_strings.append(" ".join(map(str, [*xy, point3D_id]))) | |
| fid.write(" ".join(points_strings) + "\n") | |
| def write_images_binary(images, path_to_model_file): | |
| """ | |
| see: src/base/reconstruction.cc | |
| void Reconstruction::ReadImagesBinary(const std::string& path) | |
| void Reconstruction::WriteImagesBinary(const std::string& path) | |
| """ | |
| with open(path_to_model_file, "wb") as fid: | |
| write_next_bytes(fid, len(images), "Q") | |
| for _, img in images.items(): | |
| write_next_bytes(fid, img.id, "i") | |
| write_next_bytes(fid, img.qvec.tolist(), "dddd") | |
| write_next_bytes(fid, img.tvec.tolist(), "ddd") | |
| write_next_bytes(fid, img.camera_id, "i") | |
| for char in img.name: | |
| write_next_bytes(fid, char.encode("utf-8"), "c") | |
| write_next_bytes(fid, b"\x00", "c") | |
| write_next_bytes(fid, len(img.point3D_ids), "Q") | |
| for xy, p3d_id in zip(img.xys, img.point3D_ids): | |
| write_next_bytes(fid, [*xy, p3d_id], "ddq") | |
| def read_points3D_text(path): | |
| """ | |
| see: src/base/reconstruction.cc | |
| void Reconstruction::ReadPoints3DText(const std::string& path) | |
| void Reconstruction::WritePoints3DText(const std::string& path) | |
| """ | |
| points3D = {} | |
| with open(path, "r") as fid: | |
| while True: | |
| line = fid.readline() | |
| if not line: | |
| break | |
| line = line.strip() | |
| if len(line) > 0 and line[0] != "#": | |
| elems = line.split() | |
| point3D_id = int(elems[0]) | |
| xyz = np.array(tuple(map(float, elems[1:4]))) | |
| rgb = np.array(tuple(map(int, elems[4:7]))) | |
| error = float(elems[7]) | |
| image_ids = np.array(tuple(map(int, elems[8::2]))) | |
| point2D_idxs = np.array(tuple(map(int, elems[9::2]))) | |
| points3D[point3D_id] = Point3D( | |
| id=point3D_id, | |
| xyz=xyz, | |
| rgb=rgb, | |
| error=error, | |
| image_ids=image_ids, | |
| point2D_idxs=point2D_idxs, | |
| ) | |
| return points3D | |
| def read_points3D_binary(path_to_model_file): | |
| """ | |
| see: src/base/reconstruction.cc | |
| void Reconstruction::ReadPoints3DBinary(const std::string& path) | |
| void Reconstruction::WritePoints3DBinary(const std::string& path) | |
| """ | |
| points3D = {} | |
| with open(path_to_model_file, "rb") as fid: | |
| num_points = read_next_bytes(fid, 8, "Q")[0] | |
| for _ in range(num_points): | |
| binary_point_line_properties = read_next_bytes( | |
| fid, num_bytes=43, format_char_sequence="QdddBBBd" | |
| ) | |
| point3D_id = binary_point_line_properties[0] | |
| xyz = np.array(binary_point_line_properties[1:4]) | |
| rgb = np.array(binary_point_line_properties[4:7]) | |
| error = np.array(binary_point_line_properties[7]) | |
| track_length = read_next_bytes( | |
| fid, num_bytes=8, format_char_sequence="Q" | |
| )[0] | |
| track_elems = read_next_bytes( | |
| fid, | |
| num_bytes=8 * track_length, | |
| format_char_sequence="ii" * track_length, | |
| ) | |
| image_ids = np.array(tuple(map(int, track_elems[0::2]))) | |
| point2D_idxs = np.array(tuple(map(int, track_elems[1::2]))) | |
| points3D[point3D_id] = Point3D( | |
| id=point3D_id, | |
| xyz=xyz, | |
| rgb=rgb, | |
| error=error, | |
| image_ids=image_ids, | |
| point2D_idxs=point2D_idxs, | |
| ) | |
| return points3D | |
| def write_points3D_text(points3D, path): | |
| """ | |
| see: src/base/reconstruction.cc | |
| void Reconstruction::ReadPoints3DText(const std::string& path) | |
| void Reconstruction::WritePoints3DText(const std::string& path) | |
| """ | |
| if len(points3D) == 0: | |
| mean_track_length = 0 | |
| else: | |
| mean_track_length = sum( | |
| (len(pt.image_ids) for _, pt in points3D.items()) | |
| ) / len(points3D) | |
| HEADER = ( | |
| "# 3D point list with one line of data per point:\n" | |
| + "# POINT3D_ID, X, Y, Z, R, G, B, ERROR, TRACK[] as (IMAGE_ID, POINT2D_IDX)\n" | |
| + "# Number of points: {}, mean track length: {}\n".format( | |
| len(points3D), mean_track_length | |
| ) | |
| ) | |
| with open(path, "w") as fid: | |
| fid.write(HEADER) | |
| for _, pt in points3D.items(): | |
| point_header = [pt.id, *pt.xyz, *pt.rgb, pt.error] | |
| fid.write(" ".join(map(str, point_header)) + " ") | |
| track_strings = [] | |
| for image_id, point2D in zip(pt.image_ids, pt.point2D_idxs): | |
| track_strings.append(" ".join(map(str, [image_id, point2D]))) | |
| fid.write(" ".join(track_strings) + "\n") | |
| def write_points3D_binary(points3D, path_to_model_file): | |
| """ | |
| see: src/base/reconstruction.cc | |
| void Reconstruction::ReadPoints3DBinary(const std::string& path) | |
| void Reconstruction::WritePoints3DBinary(const std::string& path) | |
| """ | |
| with open(path_to_model_file, "wb") as fid: | |
| write_next_bytes(fid, len(points3D), "Q") | |
| for _, pt in points3D.items(): | |
| write_next_bytes(fid, pt.id, "Q") | |
| write_next_bytes(fid, pt.xyz.tolist(), "ddd") | |
| write_next_bytes(fid, pt.rgb.tolist(), "BBB") | |
| write_next_bytes(fid, pt.error, "d") | |
| track_length = pt.image_ids.shape[0] | |
| write_next_bytes(fid, track_length, "Q") | |
| for image_id, point2D_id in zip(pt.image_ids, pt.point2D_idxs): | |
| write_next_bytes(fid, [image_id, point2D_id], "ii") | |
| def detect_model_format(path, ext): | |
| if ( | |
| os.path.isfile(os.path.join(path, "cameras" + ext)) | |
| and os.path.isfile(os.path.join(path, "images" + ext)) | |
| and os.path.isfile(os.path.join(path, "points3D" + ext)) | |
| ): | |
| return True | |
| return False | |
| def read_model(path, ext=""): | |
| # try to detect the extension automatically | |
| if ext == "": | |
| if detect_model_format(path, ".bin"): | |
| ext = ".bin" | |
| elif detect_model_format(path, ".txt"): | |
| ext = ".txt" | |
| else: | |
| try: | |
| cameras, images, points3D = read_model( | |
| os.path.join(path, "model/") | |
| ) | |
| logger.warning( | |
| "This SfM file structure was deprecated in hloc v1.1" | |
| ) | |
| return cameras, images, points3D | |
| except FileNotFoundError: | |
| raise FileNotFoundError( | |
| f"Could not find binary or text COLMAP model at {path}" | |
| ) | |
| if ext == ".txt": | |
| cameras = read_cameras_text(os.path.join(path, "cameras" + ext)) | |
| images = read_images_text(os.path.join(path, "images" + ext)) | |
| points3D = read_points3D_text(os.path.join(path, "points3D") + ext) | |
| else: | |
| cameras = read_cameras_binary(os.path.join(path, "cameras" + ext)) | |
| images = read_images_binary(os.path.join(path, "images" + ext)) | |
| points3D = read_points3D_binary(os.path.join(path, "points3D") + ext) | |
| return cameras, images, points3D | |
| def write_model(cameras, images, points3D, path, ext=".bin"): | |
| if ext == ".txt": | |
| write_cameras_text(cameras, os.path.join(path, "cameras" + ext)) | |
| write_images_text(images, os.path.join(path, "images" + ext)) | |
| write_points3D_text(points3D, os.path.join(path, "points3D") + ext) | |
| else: | |
| write_cameras_binary(cameras, os.path.join(path, "cameras" + ext)) | |
| write_images_binary(images, os.path.join(path, "images" + ext)) | |
| write_points3D_binary(points3D, os.path.join(path, "points3D") + ext) | |
| return cameras, images, points3D | |
| def qvec2rotmat(qvec): | |
| return np.array( | |
| [ | |
| [ | |
| 1 - 2 * qvec[2] ** 2 - 2 * qvec[3] ** 2, | |
| 2 * qvec[1] * qvec[2] - 2 * qvec[0] * qvec[3], | |
| 2 * qvec[3] * qvec[1] + 2 * qvec[0] * qvec[2], | |
| ], | |
| [ | |
| 2 * qvec[1] * qvec[2] + 2 * qvec[0] * qvec[3], | |
| 1 - 2 * qvec[1] ** 2 - 2 * qvec[3] ** 2, | |
| 2 * qvec[2] * qvec[3] - 2 * qvec[0] * qvec[1], | |
| ], | |
| [ | |
| 2 * qvec[3] * qvec[1] - 2 * qvec[0] * qvec[2], | |
| 2 * qvec[2] * qvec[3] + 2 * qvec[0] * qvec[1], | |
| 1 - 2 * qvec[1] ** 2 - 2 * qvec[2] ** 2, | |
| ], | |
| ] | |
| ) | |
| def rotmat2qvec(R): | |
| Rxx, Ryx, Rzx, Rxy, Ryy, Rzy, Rxz, Ryz, Rzz = R.flat | |
| K = ( | |
| np.array( | |
| [ | |
| [Rxx - Ryy - Rzz, 0, 0, 0], | |
| [Ryx + Rxy, Ryy - Rxx - Rzz, 0, 0], | |
| [Rzx + Rxz, Rzy + Ryz, Rzz - Rxx - Ryy, 0], | |
| [Ryz - Rzy, Rzx - Rxz, Rxy - Ryx, Rxx + Ryy + Rzz], | |
| ] | |
| ) | |
| / 3.0 | |
| ) | |
| eigvals, eigvecs = np.linalg.eigh(K) | |
| qvec = eigvecs[[3, 0, 1, 2], np.argmax(eigvals)] | |
| if qvec[0] < 0: | |
| qvec *= -1 | |
| return qvec | |
| def main(): | |
| parser = argparse.ArgumentParser( | |
| description="Read and write COLMAP binary and text models" | |
| ) | |
| parser.add_argument("--input_model", help="path to input model folder") | |
| parser.add_argument( | |
| "--input_format", | |
| choices=[".bin", ".txt"], | |
| help="input model format", | |
| default="", | |
| ) | |
| parser.add_argument("--output_model", help="path to output model folder") | |
| parser.add_argument( | |
| "--output_format", | |
| choices=[".bin", ".txt"], | |
| help="outut model format", | |
| default=".txt", | |
| ) | |
| args = parser.parse_args() | |
| cameras, images, points3D = read_model( | |
| path=args.input_model, ext=args.input_format | |
| ) | |
| print("num_cameras:", len(cameras)) | |
| print("num_images:", len(images)) | |
| print("num_points3D:", len(points3D)) | |
| if args.output_model is not None: | |
| write_model( | |
| cameras, | |
| images, | |
| points3D, | |
| path=args.output_model, | |
| ext=args.output_format, | |
| ) | |
| if __name__ == "__main__": | |
| main() | |