Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python3 -u | |
| # Copyright (c) Facebook, Inc. and its affiliates. | |
| # | |
| # This source code is licensed under the MIT license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import argparse | |
| import glob | |
| from subprocess import check_call | |
| try: | |
| import faiss | |
| has_faiss = True | |
| except ImportError: | |
| has_faiss = False | |
| import numpy as np | |
| GB = 1024 * 1024 * 1024 | |
| def call(cmd): | |
| print(cmd) | |
| check_call(cmd, shell=True) | |
| def get_batches(directory, lang, prefix="all_avg_pool"): | |
| print(f"Finding in {directory}/{prefix}.{lang}*") | |
| files = glob.glob(f"{directory}/{prefix}.{lang}*") | |
| emb_files = [] | |
| txt_files = [] | |
| for emb_fi in files: | |
| emb_files.append(emb_fi) | |
| txt_fi = emb_fi.replace(prefix, "sentences") | |
| txt_files.append(txt_fi) | |
| return emb_files, txt_files | |
| def load_batch(emb_file, dim): | |
| embeddings = np.fromfile(emb_file, dtype=np.float32) | |
| num_rows = int(embeddings.shape[0] / dim) | |
| embeddings = embeddings.reshape((num_rows, dim)) | |
| faiss.normalize_L2(embeddings) | |
| return embeddings | |
| def knnGPU_sharded(x_batches_f, y_batches_f, dim, k, direction="x2y"): | |
| if not has_faiss: | |
| raise ImportError("Please install Faiss") | |
| sims = [] | |
| inds = [] | |
| xfrom = 0 | |
| xto = 0 | |
| for x_batch_f in x_batches_f: | |
| yfrom = 0 | |
| yto = 0 | |
| x_batch = load_batch(x_batch_f, dim) | |
| xto = xfrom + x_batch.shape[0] | |
| bsims, binds = [], [] | |
| for y_batch_f in y_batches_f: | |
| y_batch = load_batch(y_batch_f, dim) | |
| neighbor_size = min(k, y_batch.shape[0]) | |
| yto = yfrom + y_batch.shape[0] | |
| print("{}-{} -> {}-{}".format(xfrom, xto, yfrom, yto)) | |
| idx = faiss.IndexFlatIP(dim) | |
| idx = faiss.index_cpu_to_all_gpus(idx) | |
| idx.add(y_batch) | |
| bsim, bind = idx.search(x_batch, neighbor_size) | |
| bsims.append(bsim) | |
| binds.append(bind + yfrom) | |
| yfrom += y_batch.shape[0] | |
| del idx | |
| del y_batch | |
| bsims = np.concatenate(bsims, axis=1) | |
| binds = np.concatenate(binds, axis=1) | |
| aux = np.argsort(-bsims, axis=1) | |
| sim_batch = np.zeros((x_batch.shape[0], k), dtype=np.float32) | |
| ind_batch = np.zeros((x_batch.shape[0], k), dtype=np.int64) | |
| for i in range(x_batch.shape[0]): | |
| for j in range(k): | |
| sim_batch[i, j] = bsims[i, aux[i, j]] | |
| ind_batch[i, j] = binds[i, aux[i, j]] | |
| sims.append(sim_batch) | |
| inds.append(ind_batch) | |
| xfrom += x_batch.shape[0] | |
| del x_batch | |
| sim = np.concatenate(sims, axis=0) | |
| ind = np.concatenate(inds, axis=0) | |
| return sim, ind | |
| def score(sim, fwd_mean, bwd_mean, margin): | |
| return margin(sim, (fwd_mean + bwd_mean) / 2) | |
| def score_candidates( | |
| sim_mat, candidate_inds, fwd_mean, bwd_mean, margin, verbose=False | |
| ): | |
| print(" - scoring {:d} candidates".format(sim_mat.shape[0])) | |
| scores = np.zeros(candidate_inds.shape) | |
| for i in range(scores.shape[0]): | |
| for j in range(scores.shape[1]): | |
| k = int(candidate_inds[i, j]) | |
| scores[i, j] = score(sim_mat[i, j], fwd_mean[i], bwd_mean[k], margin) | |
| return scores | |
| def load_text(files): | |
| all_sentences = [] | |
| for fi in files: | |
| with open(fi) as sentence_fi: | |
| for line in sentence_fi: | |
| all_sentences.append(line.strip()) | |
| print(f"Read {len(all_sentences)} sentences") | |
| return all_sentences | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser(description="Mine bitext") | |
| parser.add_argument("--src-lang", help="Source language") | |
| parser.add_argument("--tgt-lang", help="Target language") | |
| parser.add_argument( | |
| "--dict-path", help="Path to dictionary file", default="dict.txt" | |
| ) | |
| parser.add_argument( | |
| "--spm-path", help="Path to SPM model file", default="sentence.bpe.model" | |
| ) | |
| parser.add_argument("--dim", type=int, default=1024, help="Embedding dimension") | |
| parser.add_argument("--mem", type=int, default=5, help="Memory in GB") | |
| parser.add_argument("--src-dir", help="Source directory") | |
| parser.add_argument("--tgt-dir", help="Target directory") | |
| parser.add_argument("--output", help="Output path") | |
| parser.add_argument( | |
| "--neighborhood", type=int, default=4, help="Embedding dimension" | |
| ) | |
| parser.add_argument( | |
| "--threshold", type=float, default=1.06, help="Threshold on mined bitext" | |
| ) | |
| parser.add_argument( | |
| "--valid-size", | |
| type=int, | |
| default=2000, | |
| help="Number of sentences used for validation set", | |
| ) | |
| parser.add_argument( | |
| "--min-count", | |
| type=int, | |
| default=50000, | |
| help="Min num sentences used for each language", | |
| ) | |
| args = parser.parse_args() | |
| x_batches_f, x_sents_f = get_batches(args.src_dir, args.src_lang) | |
| y_batches_f, y_sents_f = get_batches(args.tgt_dir, args.tgt_lang) | |
| margin = lambda a, b: a / b | |
| y2x_sim, y2x_ind = knnGPU_sharded( | |
| y_batches_f, x_batches_f, args.dim, args.neighborhood, direction="y2x" | |
| ) | |
| x2y_sim, x2y_ind = knnGPU_sharded( | |
| x_batches_f, y_batches_f, args.dim, args.neighborhood, direction="x2y" | |
| ) | |
| x2y_mean = x2y_sim.mean(axis=1) | |
| y2x_mean = y2x_sim.mean(axis=1) | |
| fwd_scores = score_candidates(x2y_sim, x2y_ind, x2y_mean, y2x_mean, margin) | |
| bwd_scores = score_candidates(y2x_sim, y2x_ind, y2x_mean, x2y_mean, margin) | |
| fwd_best = x2y_ind[np.arange(x2y_sim.shape[0]), fwd_scores.argmax(axis=1)] | |
| bwd_best = y2x_ind[np.arange(y2x_sim.shape[0]), bwd_scores.argmax(axis=1)] | |
| indices = np.stack( | |
| ( | |
| np.concatenate((np.arange(x2y_ind.shape[0]), bwd_best)), | |
| np.concatenate((fwd_best, np.arange(y2x_ind.shape[0]))), | |
| ), | |
| axis=1, | |
| ) | |
| scores = np.concatenate((fwd_scores.max(axis=1), bwd_scores.max(axis=1))) | |
| x_sentences = load_text(x_sents_f) | |
| y_sentences = load_text(y_sents_f) | |
| threshold = args.threshold | |
| min_count = args.min_count | |
| seen_src, seen_trg = set(), set() | |
| directory = args.output | |
| call(f"mkdir -p {directory}") | |
| src_out = open( | |
| f"{directory}/all.{args.src_lang}", | |
| mode="w", | |
| encoding="utf-8", | |
| errors="surrogateescape", | |
| ) | |
| tgt_out = open( | |
| f"{directory}/all.{args.tgt_lang}", | |
| mode="w", | |
| encoding="utf-8", | |
| errors="surrogateescape", | |
| ) | |
| scores_out = open( | |
| f"{directory}/all.scores", mode="w", encoding="utf-8", errors="surrogateescape" | |
| ) | |
| count = 0 | |
| for i in np.argsort(-scores): | |
| src_ind, trg_ind = indices[i] | |
| if src_ind not in seen_src and trg_ind not in seen_trg: | |
| seen_src.add(src_ind) | |
| seen_trg.add(trg_ind) | |
| if scores[i] > threshold or count < min_count: | |
| if x_sentences[src_ind]: | |
| print(scores[i], file=scores_out) | |
| print(x_sentences[src_ind], file=src_out) | |
| print(y_sentences[trg_ind], file=tgt_out) | |
| count += 1 | |
| else: | |
| print(f"Ignoring sentence: {x_sentences[src_ind]}") | |
| src_out.close() | |
| tgt_out.close() | |
| scores_out.close() | |
| print(f"Found {count} pairs for threshold={threshold}") | |
| with open(f"{directory}/all.{args.src_lang}") as all_s, open( | |
| f"{directory}/all.{args.tgt_lang}" | |
| ) as all_t, open(f"{directory}/valid.{args.src_lang}", "w") as valid_s, open( | |
| f"{directory}/valid.{args.tgt_lang}", "w" | |
| ) as valid_t, open( | |
| f"{directory}/train.{args.src_lang}", "w" | |
| ) as train_s, open( | |
| f"{directory}/train.{args.tgt_lang}", "w" | |
| ) as train_t: | |
| count = 0 | |
| for s_line, t_line in zip(all_s, all_t): | |
| s_line = s_line.split("\t")[1] | |
| t_line = t_line.split("\t")[1] | |
| if count >= args.valid_size: | |
| train_s.write(s_line) | |
| train_t.write(t_line) | |
| else: | |
| valid_s.write(s_line) | |
| valid_t.write(t_line) | |
| count += 1 | |