Spaces:
Runtime error
Runtime error
| # Copyright (c) Facebook, Inc. and its affiliates. | |
| # | |
| # This source code is licensed under the MIT license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import unittest | |
| import tests.utils as test_utils | |
| import torch | |
| from fairseq.data import TokenBlockDataset | |
| class TestTokenBlockDataset(unittest.TestCase): | |
| def _build_dataset(self, data, **kwargs): | |
| sizes = [len(x) for x in data] | |
| underlying_ds = test_utils.TestDataset(data) | |
| return TokenBlockDataset(underlying_ds, sizes, **kwargs) | |
| def test_eos_break_mode(self): | |
| data = [ | |
| torch.tensor([5, 4, 3, 2, 1], dtype=torch.long), | |
| torch.tensor([1], dtype=torch.long), | |
| torch.tensor([8, 7, 6, 1], dtype=torch.long), | |
| ] | |
| ds = self._build_dataset(data, block_size=None, pad=0, eos=1, break_mode="eos") | |
| self.assertEqual(ds[0].tolist(), [5, 4, 3, 2, 1]) | |
| self.assertEqual(ds[1].tolist(), [1]) | |
| self.assertEqual(ds[2].tolist(), [8, 7, 6, 1]) | |
| data = [ | |
| torch.tensor([5, 4, 3, 2, 1], dtype=torch.long), | |
| torch.tensor([8, 7, 6, 1], dtype=torch.long), | |
| torch.tensor([1], dtype=torch.long), | |
| ] | |
| ds = self._build_dataset(data, block_size=None, pad=0, eos=1, break_mode="eos") | |
| self.assertEqual(ds[0].tolist(), [5, 4, 3, 2, 1]) | |
| self.assertEqual(ds[1].tolist(), [8, 7, 6, 1]) | |
| self.assertEqual(ds[2].tolist(), [1]) | |
| def test_block_break_mode(self): | |
| data = [ | |
| torch.tensor([5, 4, 3, 2, 1], dtype=torch.long), | |
| torch.tensor([8, 7, 6, 1], dtype=torch.long), | |
| torch.tensor([9, 1], dtype=torch.long), | |
| ] | |
| ds = self._build_dataset(data, block_size=3, pad=0, eos=1, break_mode="none") | |
| self.assertEqual(ds[0].tolist(), [5, 4, 3]) | |
| self.assertEqual(ds[1].tolist(), [2, 1, 8]) | |
| self.assertEqual(ds[2].tolist(), [7, 6, 1]) | |
| self.assertEqual(ds[3].tolist(), [9, 1]) | |
| def test_complete_break_mode(self): | |
| data = [ | |
| torch.tensor([5, 4, 3, 2, 1], dtype=torch.long), | |
| torch.tensor([8, 7, 6, 1], dtype=torch.long), | |
| torch.tensor([9, 1], dtype=torch.long), | |
| ] | |
| ds = self._build_dataset( | |
| data, block_size=6, pad=0, eos=1, break_mode="complete" | |
| ) | |
| self.assertEqual(ds[0].tolist(), [5, 4, 3, 2, 1]) | |
| self.assertEqual(ds[1].tolist(), [8, 7, 6, 1, 9, 1]) | |
| data = [ | |
| torch.tensor([4, 3, 2, 1], dtype=torch.long), | |
| torch.tensor([5, 1], dtype=torch.long), | |
| torch.tensor([1], dtype=torch.long), | |
| torch.tensor([6, 1], dtype=torch.long), | |
| ] | |
| ds = self._build_dataset( | |
| data, block_size=3, pad=0, eos=1, break_mode="complete" | |
| ) | |
| self.assertEqual(ds[0].tolist(), [4, 3, 2, 1]) | |
| self.assertEqual(ds[1].tolist(), [5, 1, 1]) | |
| self.assertEqual(ds[2].tolist(), [6, 1]) | |
| def test_4billion_tokens(self): | |
| """Regression test for numpy type promotion issue https://github.com/numpy/numpy/issues/5745""" | |
| data = [torch.tensor(list(range(10000)), dtype=torch.long)] * 430000 | |
| ds = self._build_dataset( | |
| data, block_size=6, pad=0, eos=1, break_mode="complete" | |
| ) | |
| ds[-1] # __getitem__ works | |
| start, end = ds.slice_indices[-1] | |
| assert end > 4294967295 # data must be sufficiently large to overflow uint32 | |
| assert not isinstance( | |
| end + 1, float | |
| ) # this would also raise, since np.uint64(1) + 1 => 2.0 | |
| if __name__ == "__main__": | |
| unittest.main() | |