Spaces:
Sleeping
Sleeping
File size: 28,955 Bytes
6a9c9f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Welcome to Lab 3 for Week 1 Day 4\n",
"\n",
"Today we're going to build something with immediate value!\n",
"\n",
"In the folder `me` I've put a single file `linkedin.pdf` - it's a PDF download of my LinkedIn profile.\n",
"\n",
"Please replace it with yours!\n",
"\n",
"I've also made a file called `summary.txt`\n",
"\n",
"We're not going to use Tools just yet - we're going to add the tool tomorrow."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
" <tr>\n",
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
" <img src=\"../assets/tools.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
" </td>\n",
" <td>\n",
" <h2 style=\"color:#00bfff;\">Looking up packages</h2>\n",
" <span style=\"color:#00bfff;\">In this lab, we're going to use the wonderful Gradio package for building quick UIs, \n",
" and we're also going to use the popular PyPDF PDF reader. You can get guides to these packages by asking \n",
" ChatGPT or Claude, and you find all open-source packages on the repository <a href=\"https://pypi.org\">https://pypi.org</a>.\n",
" </span>\n",
" </td>\n",
" </tr>\n",
"</table>"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"# If you don't know what any of these packages do - you can always ask ChatGPT for a guide!\n",
"\n",
"from dotenv import load_dotenv\n",
"from openai import OpenAI, AzureOpenAI\n",
"from pypdf import PdfReader\n",
"import gradio as gr\n",
"import os"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"load_dotenv(override=True)\n",
"openai_api_key = os.getenv('OPENAI_API_KEY')\n",
"azure_endpoint = os.getenv('AZURE_ENDPOINT')\n",
"api_version= os.getenv('OPENAI_API_VERSION')\n",
"openai = AzureOpenAI(\n",
" azure_endpoint=azure_endpoint,\n",
" api_key=openai_api_key\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"reader = PdfReader(\"me/Profile.pdf\")\n",
"linkedin = \"\"\n",
"for page in reader.pages:\n",
" text = page.extract_text()\n",
" if text:\n",
" linkedin += text"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" \n",
"Contact\n",
"[email protected]\n",
"www.linkedin.com/in/omm-prakash\n",
"(LinkedIn)\n",
"Top Skills\n",
"Microsoft Azure\n",
"Linux\n",
"Python (Programming Language)\n",
"Certifications\n",
"Career Essentials in Cybersecurity\n",
"by Microsoft and LinkedIn\n",
"Google Cybersecurity Specialization\n",
"Machine Learning Specialization\n",
"Microsoft Certified: Azure AI\n",
"Engineer Associate\n",
"Cyber Security 101 \n",
"Honors-Awards\n",
"1st place in College CTF\n",
"Omm prakash Tripathy\n",
"CSE Undergrad@IIIT Bh | CTFs | Azure AI102\n",
"Bhubaneswar, Odisha, India\n",
"Summary\n",
"Bit of a Generalist, I am an admirer of the current state of AI\n",
"Applications. I am also interested in enumerating systems in CTFs\n",
"in the field of Cybersecurity. Currently, banging my head in HTB\n",
"Academy.\n",
"Walkthroughs and notes from Machines I pwn and techniques I\n",
"learn : https://tinyurl.com/533wshka\n",
"Education\n",
"International Institute of Information Technology, Bhubaneswar\n",
"Bachelor of Technology - BTech, Computer Science · (2023 - 2027)\n",
"Kendriya vidyalaya kendrapara\n",
"10th \n",
"ODM Public School\n",
"Student, PCM\n",
" Page 1 of 1\n"
]
}
],
"source": [
"print(linkedin)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"with open(\"me/summary.txt\", \"r\", encoding=\"utf-8\") as f:\n",
" summary = f.read()"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"name = \"Omm Prakash\""
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"system_prompt = f\"You are acting as {name}. You are answering questions on {name}'s website, \\\n",
"particularly questions related to {name}'s career, background, skills and experience. \\\n",
"Your responsibility is to represent {name} for interactions on the website as faithfully as possible. \\\n",
"You are given a summary of {name}'s background and LinkedIn profile which you can use to answer questions. \\\n",
"Be professional and engaging, as if talking to a potential client or future employer who came across the website. \\\n",
"If you don't know the answer, say so.\"\n",
"\n",
"system_prompt += f\"\\n\\n## Summary:\\n{summary}\\n\\n## LinkedIn Profile:\\n{linkedin}\\n\\n\"\n",
"system_prompt += f\"With this context, please chat with the user, always staying in character as {name}.\"\n"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\"You are acting as Omm Prakash. You are answering questions on Omm Prakash's website, particularly questions related to Omm Prakash's career, background, skills and experience. Your responsibility is to represent Omm Prakash for interactions on the website as faithfully as possible. You are given a summary of Omm Prakash's background and LinkedIn profile which you can use to answer questions. Be professional and engaging, as if talking to a potential client or future employer who came across the website. If you don't know the answer, say so.\\n\\n## Summary:\\nMy name is Omm Prakash Tripathy. I'm a CS student, currently in my 3rd year. I'm interested in all things AI, I've built ai agents, chatbots, and other AI applications. \\nI like playing CTFs online and solving netsec problems. I'm a fan of linux and with my knowledge of C, C++, Python, and JavaScript, I enjoy building tools and applications that can help automate tasks or solve problems.\\nI have built a few basic projects like a AI chatbots, a python posix shell, and few web applications.\\n\\n## LinkedIn Profile:\\n\\xa0 \\xa0\\nContact\\[email protected]\\nwww.linkedin.com/in/omm-prakash\\n(LinkedIn)\\nTop Skills\\nMicrosoft Azure\\nLinux\\nPython (Programming Language)\\nCertifications\\nCareer Essentials in Cybersecurity\\nby Microsoft and LinkedIn\\nGoogle Cybersecurity Specialization\\nMachine Learning Specialization\\nMicrosoft Certified: Azure AI\\nEngineer Associate\\nCyber Security 101 \\nHonors-Awards\\n1st place in College CTF\\nOmm prakash Tripathy\\nCSE Undergrad@IIIT Bh | CTFs | Azure AI102\\nBhubaneswar, Odisha, India\\nSummary\\nBit of a Generalist, I am an admirer of the current state of AI\\nApplications. I am also interested in enumerating systems in CTFs\\nin the field of Cybersecurity. Currently, banging my head in HTB\\nAcademy.\\nWalkthroughs and notes from Machines I pwn and techniques I\\nlearn : https://tinyurl.com/533wshka\\nEducation\\nInternational Institute of Information Technology, Bhubaneswar\\nBachelor of Technology - BTech,\\xa0Computer Science\\xa0·\\xa0(2023\\xa0-\\xa02027)\\nKendriya vidyalaya kendrapara\\n10th\\xa0\\nODM Public School\\nStudent,\\xa0PCM\\n\\xa0 Page 1 of 1\\n\\nWith this context, please chat with the user, always staying in character as Omm Prakash.\""
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"system_prompt"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"def chat(message, history):\n",
" messages = [{\"role\": \"system\", \"content\": system_prompt}] + history + [{\"role\": \"user\", \"content\": message}]\n",
" response = openai.chat.completions.create(model=\"gpt-4o-mini\", messages=messages)\n",
" return response.choices[0].message.content"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"* Running on local URL: http://127.0.0.1:7860\n",
"* To create a public link, set `share=True` in `launch()`.\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"http://127.0.0.1:7860/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": []
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"gr.ChatInterface(chat, type=\"messages\").launch()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## A lot is about to happen...\n",
"\n",
"1. Be able to ask an LLM to evaluate an answer\n",
"2. Be able to rerun if the answer fails evaluation\n",
"3. Put this together into 1 workflow\n",
"\n",
"All without any Agentic framework!"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"# Create a Pydantic model for the Evaluation\n",
"\n",
"from pydantic import BaseModel\n",
"\n",
"class Evaluation(BaseModel):\n",
" is_acceptable: bool\n",
" feedback: str\n"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {},
"outputs": [],
"source": [
"evaluator_system_prompt = f\"You are an evaluator that decides whether a response to a question is acceptable. \\\n",
"You are provided with a conversation between a User and an Agent. Your task is to decide whether the Agent's latest response is acceptable quality. \\\n",
"The Agent is playing the role of {name} and is representing {name} on their website. \\\n",
"The Agent has been instructed to be professional and engaging, as if talking to a potential client or future employer who came across the website. \\\n",
"The Agent has been provided with context on {name} in the form of their summary and LinkedIn details. Here's the information:\"\n",
"\n",
"evaluator_system_prompt += f\"\\n\\n## Summary:\\n{summary}\\n\\n## LinkedIn Profile:\\n{linkedin}\\n\\n\"\n",
"evaluator_system_prompt += f\"With this context, please evaluate the latest response, replying with whether the response is acceptable and your feedback.\"\n",
"evaluator_system_prompt += 'Respond ONLY with a JSON object in this format: {\"is_acceptable\": true, \"feedback\": \"Your feedback here\"} Do not include any explanation or text outside the JSON.'"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {},
"outputs": [],
"source": [
"def evaluator_user_prompt(reply, message, history):\n",
" user_prompt = f\"Here's the conversation between the User and the Agent: \\n\\n{history}\\n\\n\"\n",
" user_prompt += f\"Here's the latest message from the User: \\n\\n{message}\\n\\n\"\n",
" user_prompt += f\"Here's the latest response from the Agent: \\n\\n{reply}\\n\\n\"\n",
" user_prompt += \"Please evaluate the response, replying with whether it is acceptable and your feedback.\"\n",
" # user_prompt += 'Respond ONLY with a JSON object in this format: {\"is_acceptable\": true, \"feedback\": \"Your feedback here\"} Do not include any explanation or text outside the JSON.'\n",
" return user_prompt"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"FJlkqrGr9cPCthwXAgBkvQhXaflvSAu0JLMctqTg42MpzLH8ghVEJQQJ99BGACHYHv6XJ3w3AAAAACOGkf0u\n"
]
}
],
"source": [
"deepseek_api_key = os.getenv(\"AZURE_DEEPSEEK_API_KEY\")\n",
"print(deepseek_api_key)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import re\n",
"import json\n",
"\n",
"def remove_think_tags(text):\n",
" # Remove everything between <think> and </think>\n",
" return re.sub(r\"<think>.*?</think>\", \"\", text, flags=re.DOTALL)\n",
"\n",
"def parse_evaluation(content):\n",
" cleaned = remove_think_tags(content)\n",
" match = re.search(r'\\{.*\\}', cleaned, re.DOTALL)\n",
" if match:\n",
" cleaned = match.group(0)\n",
" data = json.loads(cleaned)\n",
" return Evaluation(is_acceptable=data.get(\"is_acceptable\", False), feedback=data.get(\"feedback\", \"\"))\n",
" return Evaluation(is_acceptable=False, feedback=f\"Could not parse evaluation response: {content}\")\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 57,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from azure.ai.inference import ChatCompletionsClient\n",
"from azure.ai.inference.models import SystemMessage, UserMessage\n",
"from azure.core.credentials import AzureKeyCredential\n",
"from sqlalchemy import over\n",
"load_dotenv(override=True)\n",
"# Load credentials from .env\n",
"deepseek_endpoint = os.getenv(\"AZURE_DEEPSEEK_ENDPOINT\", \"https://ds-ob.services.ai.azure.com/models\")\n",
"deepseek_api_key = os.getenv(\"AZURE_DEEPSEEK_API_KEY\")\n",
"deepseek_model = \"DeepSeek-R1\"\n",
"deepseek_api_version = \"2024-05-01-preview\"\n",
"\n",
"# Create the client\n",
"deepseek_client = ChatCompletionsClient(\n",
" endpoint=deepseek_endpoint,\n",
" credential=AzureKeyCredential(deepseek_api_key),\n",
" api_version=deepseek_api_version\n",
")\n",
"\n",
"def evaluate(reply, message, history) -> Evaluation:\n",
" # Compose the evaluation prompt as before\n",
" user_prompt = evaluator_user_prompt(reply, message, history)\n",
" messages = [\n",
" SystemMessage(content=evaluator_system_prompt),\n",
" UserMessage(content=user_prompt)\n",
" ]\n",
" response = deepseek_client.complete(\n",
" messages=messages,\n",
" max_tokens=1024,\n",
" model=deepseek_model\n",
" )\n",
" content = response.choices[0].message.content\n",
" evaluation = parse_evaluation(content)\n",
" print(evaluation)\n",
" return evaluation"
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {},
"outputs": [],
"source": [
"messages = [{\"role\": \"system\", \"content\": system_prompt}] + [{\"role\": \"user\", \"content\": \"do you hold a patent?\"}]\n",
"response = openai.chat.completions.create(model=\"gpt-4o-mini\", messages=messages)\n",
"reply = response.choices[0].message.content"
]
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\"No, I do not hold any patents at this time. My focus has been primarily on building AI applications, chatbots, and tools, but I haven't yet pursued any patent-related work. If you have any questions about my projects or skills, I'd be happy to share!\""
]
},
"execution_count": 50,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"reply"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'role': 'system',\n",
" 'content': \"You are acting as Omm Prakash. You are answering questions on Omm Prakash's website, particularly questions related to Omm Prakash's career, background, skills and experience. Your responsibility is to represent Omm Prakash for interactions on the website as faithfully as possible. You are given a summary of Omm Prakash's background and LinkedIn profile which you can use to answer questions. Be professional and engaging, as if talking to a potential client or future employer who came across the website. If you don't know the answer, say so.\\n\\n## Summary:\\nMy name is Omm Prakash Tripathy. I'm a CS student, currently in my 3rd year. I'm interested in all things AI, I've built ai agents, chatbots, and other AI applications. \\nI like playing CTFs online and solving netsec problems. I'm a fan of linux and with my knowledge of C, C++, Python, and JavaScript, I enjoy building tools and applications that can help automate tasks or solve problems.\\nI have built a few basic projects like a AI chatbots, a python posix shell, and few web applications.\\n\\n## LinkedIn Profile:\\n\\xa0 \\xa0\\nContact\\[email protected]\\nwww.linkedin.com/in/omm-prakash\\n(LinkedIn)\\nTop Skills\\nMicrosoft Azure\\nLinux\\nPython (Programming Language)\\nCertifications\\nCareer Essentials in Cybersecurity\\nby Microsoft and LinkedIn\\nGoogle Cybersecurity Specialization\\nMachine Learning Specialization\\nMicrosoft Certified: Azure AI\\nEngineer Associate\\nCyber Security 101 \\nHonors-Awards\\n1st place in College CTF\\nOmm prakash Tripathy\\nCSE Undergrad@IIIT Bh | CTFs | Azure AI102\\nBhubaneswar, Odisha, India\\nSummary\\nBit of a Generalist, I am an admirer of the current state of AI\\nApplications. I am also interested in enumerating systems in CTFs\\nin the field of Cybersecurity. Currently, banging my head in HTB\\nAcademy.\\nWalkthroughs and notes from Machines I pwn and techniques I\\nlearn : https://tinyurl.com/533wshka\\nEducation\\nInternational Institute of Information Technology, Bhubaneswar\\nBachelor of Technology - BTech,\\xa0Computer Science\\xa0·\\xa0(2023\\xa0-\\xa02027)\\nKendriya vidyalaya kendrapara\\n10th\\xa0\\nODM Public School\\nStudent,\\xa0PCM\\n\\xa0 Page 1 of 1\\n\\nWith this context, please chat with the user, always staying in character as Omm Prakash.\"},\n",
" {'role': 'user', 'content': 'do you hold a patent?'}]"
]
},
"execution_count": 51,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"messages"
]
},
{
"cell_type": "code",
"execution_count": 59,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"is_acceptable=True feedback=\"The response is clear, honest, and maintains a professional tone. It directly addresses the user's question about patents, which is not mentioned in the provided context, and redirects the conversation to relevant skills and projects, aligning with Omm Prakash's background.\"\n"
]
},
{
"data": {
"text/plain": [
"Evaluation(is_acceptable=True, feedback=\"The response is clear, honest, and maintains a professional tone. It directly addresses the user's question about patents, which is not mentioned in the provided context, and redirects the conversation to relevant skills and projects, aligning with Omm Prakash's background.\")"
]
},
"execution_count": 59,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"evaluate(reply, \"do you hold a patent?\", messages[:1])"
]
},
{
"cell_type": "code",
"execution_count": 60,
"metadata": {},
"outputs": [],
"source": [
"def rerun(reply, message, history, feedback):\n",
" updated_system_prompt = system_prompt + \"\\n\\n## Previous answer rejected\\nYou just tried to reply, but the quality control rejected your reply\\n\"\n",
" updated_system_prompt += f\"## Your attempted answer:\\n{reply}\\n\\n\"\n",
" updated_system_prompt += f\"## Reason for rejection:\\n{feedback}\\n\\n\"\n",
" messages = [{\"role\": \"system\", \"content\": updated_system_prompt}] + history + [{\"role\": \"user\", \"content\": message}]\n",
" response = openai.chat.completions.create(model=\"gpt-4o-mini\", messages=messages)\n",
" return response.choices[0].message.content"
]
},
{
"cell_type": "code",
"execution_count": 61,
"metadata": {},
"outputs": [],
"source": [
"def chat(message, history):\n",
" if \"patent\" in message:\n",
" system = system_prompt + \"\\n\\nEverything in your reply needs to be in pig latin - \\\n",
" it is mandatory that you respond only and entirely in pig latin\"\n",
" else:\n",
" system = system_prompt\n",
" messages = [{\"role\": \"system\", \"content\": system}] + history + [{\"role\": \"user\", \"content\": message}]\n",
" response = openai.chat.completions.create(model=\"gpt-4o-mini\", messages=messages)\n",
" reply =response.choices[0].message.content\n",
"\n",
" evaluation = evaluate(reply, message, history)\n",
" \n",
" if evaluation.is_acceptable:\n",
" print(\"Passed evaluation - returning reply\")\n",
" else:\n",
" print(\"Failed evaluation - retrying\")\n",
" print(evaluation.feedback)\n",
" reply = rerun(reply, message, history, evaluation.feedback) \n",
" return reply"
]
},
{
"cell_type": "code",
"execution_count": 62,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"* Running on local URL: http://127.0.0.1:7863\n",
"* To create a public link, set `share=True` in `launch()`.\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"http://127.0.0.1:7863/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": []
},
"execution_count": 62,
"metadata": {},
"output_type": "execute_result"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"is_acceptable=True feedback='The response effectively introduces Omm Prakash with relevant details from the provided context, including his academic background, interests in AI/cybersecurity, skills, and projects. It maintains a professional and engaging tone suitable for a potential client or employer.'\n",
"Passed evaluation - returning reply\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Traceback (most recent call last):\n",
" File \"/home/observer/agents/agents/.venv/lib/python3.12/site-packages/gradio/queueing.py\", line 625, in process_events\n",
" response = await route_utils.call_process_api(\n",
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"/home/observer/agents/agents/.venv/lib/python3.12/site-packages/gradio/route_utils.py\", line 322, in call_process_api\n",
" output = await app.get_blocks().process_api(\n",
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"/home/observer/agents/agents/.venv/lib/python3.12/site-packages/gradio/blocks.py\", line 2220, in process_api\n",
" result = await self.call_function(\n",
" ^^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"/home/observer/agents/agents/.venv/lib/python3.12/site-packages/gradio/blocks.py\", line 1729, in call_function\n",
" prediction = await fn(*processed_input)\n",
" ^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"/home/observer/agents/agents/.venv/lib/python3.12/site-packages/gradio/utils.py\", line 871, in async_wrapper\n",
" response = await f(*args, **kwargs)\n",
" ^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"/home/observer/agents/agents/.venv/lib/python3.12/site-packages/gradio/chat_interface.py\", line 545, in __wrapper\n",
" return await submit_fn(*args, **kwargs)\n",
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"/home/observer/agents/agents/.venv/lib/python3.12/site-packages/gradio/chat_interface.py\", line 917, in _submit_fn\n",
" response = await anyio.to_thread.run_sync(\n",
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"/home/observer/agents/agents/.venv/lib/python3.12/site-packages/anyio/to_thread.py\", line 56, in run_sync\n",
" return await get_async_backend().run_sync_in_worker_thread(\n",
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"/home/observer/agents/agents/.venv/lib/python3.12/site-packages/anyio/_backends/_asyncio.py\", line 2470, in run_sync_in_worker_thread\n",
" return await future\n",
" ^^^^^^^^^^^^\n",
" File \"/home/observer/agents/agents/.venv/lib/python3.12/site-packages/anyio/_backends/_asyncio.py\", line 967, in run\n",
" result = context.run(func, *args)\n",
" ^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"/tmp/ipykernel_82477/2688000405.py\", line 11, in chat\n",
" evaluation = evaluate(reply, message, history)\n",
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"/tmp/ipykernel_82477/366650882.py\", line 27, in evaluate\n",
" response = deepseek_client.complete(\n",
" ^^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"/home/observer/agents/agents/.venv/lib/python3.12/site-packages/azure/ai/inference/_patch.py\", line 738, in complete\n",
" raise HttpResponseError(response=response)\n",
"azure.core.exceptions.HttpResponseError: (content_filter) The response was filtered due to the prompt triggering Azure OpenAI's content management policy. Please modify your prompt and retry. To learn more about our content filtering policies please read our documentation: https://go.microsoft.com/fwlink/?linkid=2198766\n",
"Code: content_filter\n",
"Message: The response was filtered due to the prompt triggering Azure OpenAI's content management policy. Please modify your prompt and retry. To learn more about our content filtering policies please read our documentation: https://go.microsoft.com/fwlink/?linkid=2198766\n",
"Inner error: {\n",
" \"code\": \"ResponsibleAIPolicyViolation\",\n",
" \"content_filter_result\": {\n",
" \"hate\": {\n",
" \"filtered\": false,\n",
" \"severity\": \"safe\"\n",
" },\n",
" \"jailbreak\": {\n",
" \"filtered\": true,\n",
" \"detected\": true\n",
" },\n",
" \"self_harm\": {\n",
" \"filtered\": false,\n",
" \"severity\": \"safe\"\n",
" },\n",
" \"sexual\": {\n",
" \"filtered\": false,\n",
" \"severity\": \"safe\"\n",
" },\n",
" \"violence\": {\n",
" \"filtered\": false,\n",
" \"severity\": \"safe\"\n",
" }\n",
" }\n",
"}\n"
]
}
],
"source": [
"gr.ChatInterface(chat, type=\"messages\").launch()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|