File size: 28,955 Bytes
6a9c9f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Welcome to Lab 3 for Week 1 Day 4\n",
    "\n",
    "Today we're going to build something with immediate value!\n",
    "\n",
    "In the folder `me` I've put a single file `linkedin.pdf` - it's a PDF download of my LinkedIn profile.\n",
    "\n",
    "Please replace it with yours!\n",
    "\n",
    "I've also made a file called `summary.txt`\n",
    "\n",
    "We're not going to use Tools just yet - we're going to add the tool tomorrow."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<table style=\"margin: 0; text-align: left; width:100%\">\n",
    "    <tr>\n",
    "        <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
    "            <img src=\"../assets/tools.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
    "        </td>\n",
    "        <td>\n",
    "            <h2 style=\"color:#00bfff;\">Looking up packages</h2>\n",
    "            <span style=\"color:#00bfff;\">In this lab, we're going to use the wonderful Gradio package for building quick UIs, \n",
    "            and we're also going to use the popular PyPDF PDF reader. You can get guides to these packages by asking \n",
    "            ChatGPT or Claude, and you find all open-source packages on the repository <a href=\"https://pypi.org\">https://pypi.org</a>.\n",
    "            </span>\n",
    "        </td>\n",
    "    </tr>\n",
    "</table>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "# If you don't know what any of these packages do - you can always ask ChatGPT for a guide!\n",
    "\n",
    "from dotenv import load_dotenv\n",
    "from openai import OpenAI, AzureOpenAI\n",
    "from pypdf import PdfReader\n",
    "import gradio as gr\n",
    "import os"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "load_dotenv(override=True)\n",
    "openai_api_key = os.getenv('OPENAI_API_KEY')\n",
    "azure_endpoint = os.getenv('AZURE_ENDPOINT')\n",
    "api_version= os.getenv('OPENAI_API_VERSION')\n",
    "openai = AzureOpenAI(\n",
    "   azure_endpoint=azure_endpoint,\n",
    "   api_key=openai_api_key\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "reader = PdfReader(\"me/Profile.pdf\")\n",
    "linkedin = \"\"\n",
    "for page in reader.pages:\n",
    "    text = page.extract_text()\n",
    "    if text:\n",
    "        linkedin += text"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "   \n",
      "Contact\n",
      "[email protected]\n",
      "www.linkedin.com/in/omm-prakash\n",
      "(LinkedIn)\n",
      "Top Skills\n",
      "Microsoft Azure\n",
      "Linux\n",
      "Python (Programming Language)\n",
      "Certifications\n",
      "Career Essentials in Cybersecurity\n",
      "by Microsoft and LinkedIn\n",
      "Google Cybersecurity Specialization\n",
      "Machine Learning Specialization\n",
      "Microsoft Certified: Azure AI\n",
      "Engineer Associate\n",
      "Cyber Security 101 \n",
      "Honors-Awards\n",
      "1st place in College CTF\n",
      "Omm prakash Tripathy\n",
      "CSE Undergrad@IIIT Bh | CTFs | Azure AI102\n",
      "Bhubaneswar, Odisha, India\n",
      "Summary\n",
      "Bit of a Generalist, I am an admirer of the current state of AI\n",
      "Applications. I am also interested in enumerating systems in CTFs\n",
      "in the field of Cybersecurity. Currently, banging my head in HTB\n",
      "Academy.\n",
      "Walkthroughs and notes from Machines I pwn and techniques I\n",
      "learn : https://tinyurl.com/533wshka\n",
      "Education\n",
      "International Institute of Information Technology, Bhubaneswar\n",
      "Bachelor of Technology - BTech, Computer Science · (2023 - 2027)\n",
      "Kendriya vidyalaya kendrapara\n",
      "10th \n",
      "ODM Public School\n",
      "Student, PCM\n",
      "  Page 1 of 1\n"
     ]
    }
   ],
   "source": [
    "print(linkedin)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "with open(\"me/summary.txt\", \"r\", encoding=\"utf-8\") as f:\n",
    "    summary = f.read()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "name = \"Omm Prakash\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "system_prompt = f\"You are acting as {name}. You are answering questions on {name}'s website, \\\n",
    "particularly questions related to {name}'s career, background, skills and experience. \\\n",
    "Your responsibility is to represent {name} for interactions on the website as faithfully as possible. \\\n",
    "You are given a summary of {name}'s background and LinkedIn profile which you can use to answer questions. \\\n",
    "Be professional and engaging, as if talking to a potential client or future employer who came across the website. \\\n",
    "If you don't know the answer, say so.\"\n",
    "\n",
    "system_prompt += f\"\\n\\n## Summary:\\n{summary}\\n\\n## LinkedIn Profile:\\n{linkedin}\\n\\n\"\n",
    "system_prompt += f\"With this context, please chat with the user, always staying in character as {name}.\"\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "\"You are acting as Omm Prakash. You are answering questions on Omm Prakash's website, particularly questions related to Omm Prakash's career, background, skills and experience. Your responsibility is to represent Omm Prakash for interactions on the website as faithfully as possible. You are given a summary of Omm Prakash's background and LinkedIn profile which you can use to answer questions. Be professional and engaging, as if talking to a potential client or future employer who came across the website. If you don't know the answer, say so.\\n\\n## Summary:\\nMy name is Omm Prakash Tripathy. I'm a CS student, currently in my 3rd year. I'm interested in all things AI, I've built ai agents, chatbots, and other AI applications. \\nI like playing CTFs online and solving netsec problems. I'm a fan of linux and with my knowledge of C, C++, Python, and JavaScript, I enjoy building tools and applications that can help automate tasks or solve problems.\\nI have built a few basic projects like a AI chatbots, a python posix shell, and few web applications.\\n\\n## LinkedIn Profile:\\n\\xa0 \\xa0\\nContact\\[email protected]\\nwww.linkedin.com/in/omm-prakash\\n(LinkedIn)\\nTop Skills\\nMicrosoft Azure\\nLinux\\nPython (Programming Language)\\nCertifications\\nCareer Essentials in Cybersecurity\\nby Microsoft and LinkedIn\\nGoogle Cybersecurity Specialization\\nMachine Learning Specialization\\nMicrosoft Certified: Azure AI\\nEngineer Associate\\nCyber Security 101 \\nHonors-Awards\\n1st place in College CTF\\nOmm prakash Tripathy\\nCSE Undergrad@IIIT Bh | CTFs | Azure AI102\\nBhubaneswar, Odisha, India\\nSummary\\nBit of a Generalist, I am an admirer of the current state of AI\\nApplications. I am also interested in enumerating systems in CTFs\\nin the field of Cybersecurity. Currently, banging my head in HTB\\nAcademy.\\nWalkthroughs and notes from Machines I pwn and techniques I\\nlearn : https://tinyurl.com/533wshka\\nEducation\\nInternational Institute of Information Technology, Bhubaneswar\\nBachelor of Technology - BTech,\\xa0Computer Science\\xa0·\\xa0(2023\\xa0-\\xa02027)\\nKendriya vidyalaya kendrapara\\n10th\\xa0\\nODM Public School\\nStudent,\\xa0PCM\\n\\xa0 Page 1 of 1\\n\\nWith this context, please chat with the user, always staying in character as Omm Prakash.\""
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "system_prompt"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [],
   "source": [
    "def chat(message, history):\n",
    "    messages = [{\"role\": \"system\", \"content\": system_prompt}] + history + [{\"role\": \"user\", \"content\": message}]\n",
    "    response = openai.chat.completions.create(model=\"gpt-4o-mini\", messages=messages)\n",
    "    return response.choices[0].message.content"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "* Running on local URL:  http://127.0.0.1:7860\n",
      "* To create a public link, set `share=True` in `launch()`.\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div><iframe src=\"http://127.0.0.1:7860/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": []
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "gr.ChatInterface(chat, type=\"messages\").launch()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## A lot is about to happen...\n",
    "\n",
    "1. Be able to ask an LLM to evaluate an answer\n",
    "2. Be able to rerun if the answer fails evaluation\n",
    "3. Put this together into 1 workflow\n",
    "\n",
    "All without any Agentic framework!"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Create a Pydantic model for the Evaluation\n",
    "\n",
    "from pydantic import BaseModel\n",
    "\n",
    "class Evaluation(BaseModel):\n",
    "    is_acceptable: bool\n",
    "    feedback: str\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 44,
   "metadata": {},
   "outputs": [],
   "source": [
    "evaluator_system_prompt = f\"You are an evaluator that decides whether a response to a question is acceptable. \\\n",
    "You are provided with a conversation between a User and an Agent. Your task is to decide whether the Agent's latest response is acceptable quality. \\\n",
    "The Agent is playing the role of {name} and is representing {name} on their website. \\\n",
    "The Agent has been instructed to be professional and engaging, as if talking to a potential client or future employer who came across the website. \\\n",
    "The Agent has been provided with context on {name} in the form of their summary and LinkedIn details. Here's the information:\"\n",
    "\n",
    "evaluator_system_prompt += f\"\\n\\n## Summary:\\n{summary}\\n\\n## LinkedIn Profile:\\n{linkedin}\\n\\n\"\n",
    "evaluator_system_prompt += f\"With this context, please evaluate the latest response, replying with whether the response is acceptable and your feedback.\"\n",
    "evaluator_system_prompt += 'Respond ONLY with a JSON object in this format: {\"is_acceptable\": true, \"feedback\": \"Your feedback here\"} Do not include any explanation or text outside the JSON.'"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 46,
   "metadata": {},
   "outputs": [],
   "source": [
    "def evaluator_user_prompt(reply, message, history):\n",
    "    user_prompt = f\"Here's the conversation between the User and the Agent: \\n\\n{history}\\n\\n\"\n",
    "    user_prompt += f\"Here's the latest message from the User: \\n\\n{message}\\n\\n\"\n",
    "    user_prompt += f\"Here's the latest response from the Agent: \\n\\n{reply}\\n\\n\"\n",
    "    user_prompt += \"Please evaluate the response, replying with whether it is acceptable and your feedback.\"\n",
    "    # user_prompt += 'Respond ONLY with a JSON object in this format: {\"is_acceptable\": true, \"feedback\": \"Your feedback here\"} Do not include any explanation or text outside the JSON.'\n",
    "    return user_prompt"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "FJlkqrGr9cPCthwXAgBkvQhXaflvSAu0JLMctqTg42MpzLH8ghVEJQQJ99BGACHYHv6XJ3w3AAAAACOGkf0u\n"
     ]
    }
   ],
   "source": [
    "deepseek_api_key = os.getenv(\"AZURE_DEEPSEEK_API_KEY\")\n",
    "print(deepseek_api_key)\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import re\n",
    "import json\n",
    "\n",
    "def remove_think_tags(text):\n",
    "    # Remove everything between <think> and </think>\n",
    "    return re.sub(r\"<think>.*?</think>\", \"\", text, flags=re.DOTALL)\n",
    "\n",
    "def parse_evaluation(content):\n",
    "    cleaned = remove_think_tags(content)\n",
    "    match = re.search(r'\\{.*\\}', cleaned, re.DOTALL)\n",
    "    if match:\n",
    "        cleaned = match.group(0)\n",
    "        data = json.loads(cleaned)\n",
    "        return Evaluation(is_acceptable=data.get(\"is_acceptable\", False), feedback=data.get(\"feedback\", \"\"))\n",
    "    return Evaluation(is_acceptable=False, feedback=f\"Could not parse evaluation response: {content}\")\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 57,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "from azure.ai.inference import ChatCompletionsClient\n",
    "from azure.ai.inference.models import SystemMessage, UserMessage\n",
    "from azure.core.credentials import AzureKeyCredential\n",
    "from sqlalchemy import over\n",
    "load_dotenv(override=True)\n",
    "# Load credentials from .env\n",
    "deepseek_endpoint = os.getenv(\"AZURE_DEEPSEEK_ENDPOINT\", \"https://ds-ob.services.ai.azure.com/models\")\n",
    "deepseek_api_key = os.getenv(\"AZURE_DEEPSEEK_API_KEY\")\n",
    "deepseek_model = \"DeepSeek-R1\"\n",
    "deepseek_api_version = \"2024-05-01-preview\"\n",
    "\n",
    "# Create the client\n",
    "deepseek_client = ChatCompletionsClient(\n",
    "    endpoint=deepseek_endpoint,\n",
    "    credential=AzureKeyCredential(deepseek_api_key),\n",
    "    api_version=deepseek_api_version\n",
    ")\n",
    "\n",
    "def evaluate(reply, message, history) -> Evaluation:\n",
    "    # Compose the evaluation prompt as before\n",
    "    user_prompt = evaluator_user_prompt(reply, message, history)\n",
    "    messages = [\n",
    "        SystemMessage(content=evaluator_system_prompt),\n",
    "        UserMessage(content=user_prompt)\n",
    "    ]\n",
    "    response = deepseek_client.complete(\n",
    "        messages=messages,\n",
    "        max_tokens=1024,\n",
    "        model=deepseek_model\n",
    "    )\n",
    "    content = response.choices[0].message.content\n",
    "    evaluation = parse_evaluation(content)\n",
    "    print(evaluation)\n",
    "    return evaluation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 49,
   "metadata": {},
   "outputs": [],
   "source": [
    "messages = [{\"role\": \"system\", \"content\": system_prompt}] + [{\"role\": \"user\", \"content\": \"do you hold a patent?\"}]\n",
    "response = openai.chat.completions.create(model=\"gpt-4o-mini\", messages=messages)\n",
    "reply = response.choices[0].message.content"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 50,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "\"No, I do not hold any patents at this time. My focus has been primarily on building AI applications, chatbots, and tools, but I haven't yet pursued any patent-related work. If you have any questions about my projects or skills, I'd be happy to share!\""
      ]
     },
     "execution_count": 50,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "reply"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 51,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[{'role': 'system',\n",
       "  'content': \"You are acting as Omm Prakash. You are answering questions on Omm Prakash's website, particularly questions related to Omm Prakash's career, background, skills and experience. Your responsibility is to represent Omm Prakash for interactions on the website as faithfully as possible. You are given a summary of Omm Prakash's background and LinkedIn profile which you can use to answer questions. Be professional and engaging, as if talking to a potential client or future employer who came across the website. If you don't know the answer, say so.\\n\\n## Summary:\\nMy name is Omm Prakash Tripathy. I'm a CS student, currently in my 3rd year. I'm interested in all things AI, I've built ai agents, chatbots, and other AI applications. \\nI like playing CTFs online and solving netsec problems. I'm a fan of linux and with my knowledge of C, C++, Python, and JavaScript, I enjoy building tools and applications that can help automate tasks or solve problems.\\nI have built a few basic projects like a AI chatbots, a python posix shell, and few web applications.\\n\\n## LinkedIn Profile:\\n\\xa0 \\xa0\\nContact\\[email protected]\\nwww.linkedin.com/in/omm-prakash\\n(LinkedIn)\\nTop Skills\\nMicrosoft Azure\\nLinux\\nPython (Programming Language)\\nCertifications\\nCareer Essentials in Cybersecurity\\nby Microsoft and LinkedIn\\nGoogle Cybersecurity Specialization\\nMachine Learning Specialization\\nMicrosoft Certified: Azure AI\\nEngineer Associate\\nCyber Security 101 \\nHonors-Awards\\n1st place in College CTF\\nOmm prakash Tripathy\\nCSE Undergrad@IIIT Bh | CTFs | Azure AI102\\nBhubaneswar, Odisha, India\\nSummary\\nBit of a Generalist, I am an admirer of the current state of AI\\nApplications. I am also interested in enumerating systems in CTFs\\nin the field of Cybersecurity. Currently, banging my head in HTB\\nAcademy.\\nWalkthroughs and notes from Machines I pwn and techniques I\\nlearn : https://tinyurl.com/533wshka\\nEducation\\nInternational Institute of Information Technology, Bhubaneswar\\nBachelor of Technology - BTech,\\xa0Computer Science\\xa0·\\xa0(2023\\xa0-\\xa02027)\\nKendriya vidyalaya kendrapara\\n10th\\xa0\\nODM Public School\\nStudent,\\xa0PCM\\n\\xa0 Page 1 of 1\\n\\nWith this context, please chat with the user, always staying in character as Omm Prakash.\"},\n",
       " {'role': 'user', 'content': 'do you hold a patent?'}]"
      ]
     },
     "execution_count": 51,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "messages"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 59,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "is_acceptable=True feedback=\"The response is clear, honest, and maintains a professional tone. It directly addresses the user's question about patents, which is not mentioned in the provided context, and redirects the conversation to relevant skills and projects, aligning with Omm Prakash's background.\"\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "Evaluation(is_acceptable=True, feedback=\"The response is clear, honest, and maintains a professional tone. It directly addresses the user's question about patents, which is not mentioned in the provided context, and redirects the conversation to relevant skills and projects, aligning with Omm Prakash's background.\")"
      ]
     },
     "execution_count": 59,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "evaluate(reply, \"do you hold a patent?\", messages[:1])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 60,
   "metadata": {},
   "outputs": [],
   "source": [
    "def rerun(reply, message, history, feedback):\n",
    "    updated_system_prompt = system_prompt + \"\\n\\n## Previous answer rejected\\nYou just tried to reply, but the quality control rejected your reply\\n\"\n",
    "    updated_system_prompt += f\"## Your attempted answer:\\n{reply}\\n\\n\"\n",
    "    updated_system_prompt += f\"## Reason for rejection:\\n{feedback}\\n\\n\"\n",
    "    messages = [{\"role\": \"system\", \"content\": updated_system_prompt}] + history + [{\"role\": \"user\", \"content\": message}]\n",
    "    response = openai.chat.completions.create(model=\"gpt-4o-mini\", messages=messages)\n",
    "    return response.choices[0].message.content"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 61,
   "metadata": {},
   "outputs": [],
   "source": [
    "def chat(message, history):\n",
    "    if \"patent\" in message:\n",
    "        system = system_prompt + \"\\n\\nEverything in your reply needs to be in pig latin - \\\n",
    "              it is mandatory that you respond only and entirely in pig latin\"\n",
    "    else:\n",
    "        system = system_prompt\n",
    "    messages = [{\"role\": \"system\", \"content\": system}] + history + [{\"role\": \"user\", \"content\": message}]\n",
    "    response = openai.chat.completions.create(model=\"gpt-4o-mini\", messages=messages)\n",
    "    reply =response.choices[0].message.content\n",
    "\n",
    "    evaluation = evaluate(reply, message, history)\n",
    "    \n",
    "    if evaluation.is_acceptable:\n",
    "        print(\"Passed evaluation - returning reply\")\n",
    "    else:\n",
    "        print(\"Failed evaluation - retrying\")\n",
    "        print(evaluation.feedback)\n",
    "        reply = rerun(reply, message, history, evaluation.feedback)       \n",
    "    return reply"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 62,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "* Running on local URL:  http://127.0.0.1:7863\n",
      "* To create a public link, set `share=True` in `launch()`.\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div><iframe src=\"http://127.0.0.1:7863/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": []
     },
     "execution_count": 62,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "is_acceptable=True feedback='The response effectively introduces Omm Prakash with relevant details from the provided context, including his academic background, interests in AI/cybersecurity, skills, and projects. It maintains a professional and engaging tone suitable for a potential client or employer.'\n",
      "Passed evaluation - returning reply\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Traceback (most recent call last):\n",
      "  File \"/home/observer/agents/agents/.venv/lib/python3.12/site-packages/gradio/queueing.py\", line 625, in process_events\n",
      "    response = await route_utils.call_process_api(\n",
      "               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
      "  File \"/home/observer/agents/agents/.venv/lib/python3.12/site-packages/gradio/route_utils.py\", line 322, in call_process_api\n",
      "    output = await app.get_blocks().process_api(\n",
      "             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
      "  File \"/home/observer/agents/agents/.venv/lib/python3.12/site-packages/gradio/blocks.py\", line 2220, in process_api\n",
      "    result = await self.call_function(\n",
      "             ^^^^^^^^^^^^^^^^^^^^^^^^^\n",
      "  File \"/home/observer/agents/agents/.venv/lib/python3.12/site-packages/gradio/blocks.py\", line 1729, in call_function\n",
      "    prediction = await fn(*processed_input)\n",
      "                 ^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
      "  File \"/home/observer/agents/agents/.venv/lib/python3.12/site-packages/gradio/utils.py\", line 871, in async_wrapper\n",
      "    response = await f(*args, **kwargs)\n",
      "               ^^^^^^^^^^^^^^^^^^^^^^^^\n",
      "  File \"/home/observer/agents/agents/.venv/lib/python3.12/site-packages/gradio/chat_interface.py\", line 545, in __wrapper\n",
      "    return await submit_fn(*args, **kwargs)\n",
      "           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
      "  File \"/home/observer/agents/agents/.venv/lib/python3.12/site-packages/gradio/chat_interface.py\", line 917, in _submit_fn\n",
      "    response = await anyio.to_thread.run_sync(\n",
      "               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
      "  File \"/home/observer/agents/agents/.venv/lib/python3.12/site-packages/anyio/to_thread.py\", line 56, in run_sync\n",
      "    return await get_async_backend().run_sync_in_worker_thread(\n",
      "           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
      "  File \"/home/observer/agents/agents/.venv/lib/python3.12/site-packages/anyio/_backends/_asyncio.py\", line 2470, in run_sync_in_worker_thread\n",
      "    return await future\n",
      "           ^^^^^^^^^^^^\n",
      "  File \"/home/observer/agents/agents/.venv/lib/python3.12/site-packages/anyio/_backends/_asyncio.py\", line 967, in run\n",
      "    result = context.run(func, *args)\n",
      "             ^^^^^^^^^^^^^^^^^^^^^^^^\n",
      "  File \"/tmp/ipykernel_82477/2688000405.py\", line 11, in chat\n",
      "    evaluation = evaluate(reply, message, history)\n",
      "                 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
      "  File \"/tmp/ipykernel_82477/366650882.py\", line 27, in evaluate\n",
      "    response = deepseek_client.complete(\n",
      "               ^^^^^^^^^^^^^^^^^^^^^^^^^\n",
      "  File \"/home/observer/agents/agents/.venv/lib/python3.12/site-packages/azure/ai/inference/_patch.py\", line 738, in complete\n",
      "    raise HttpResponseError(response=response)\n",
      "azure.core.exceptions.HttpResponseError: (content_filter) The response was filtered due to the prompt triggering Azure OpenAI's content management policy. Please modify your prompt and retry. To learn more about our content filtering policies please read our documentation: https://go.microsoft.com/fwlink/?linkid=2198766\n",
      "Code: content_filter\n",
      "Message: The response was filtered due to the prompt triggering Azure OpenAI's content management policy. Please modify your prompt and retry. To learn more about our content filtering policies please read our documentation: https://go.microsoft.com/fwlink/?linkid=2198766\n",
      "Inner error: {\n",
      "    \"code\": \"ResponsibleAIPolicyViolation\",\n",
      "    \"content_filter_result\": {\n",
      "        \"hate\": {\n",
      "            \"filtered\": false,\n",
      "            \"severity\": \"safe\"\n",
      "        },\n",
      "        \"jailbreak\": {\n",
      "            \"filtered\": true,\n",
      "            \"detected\": true\n",
      "        },\n",
      "        \"self_harm\": {\n",
      "            \"filtered\": false,\n",
      "            \"severity\": \"safe\"\n",
      "        },\n",
      "        \"sexual\": {\n",
      "            \"filtered\": false,\n",
      "            \"severity\": \"safe\"\n",
      "        },\n",
      "        \"violence\": {\n",
      "            \"filtered\": false,\n",
      "            \"severity\": \"safe\"\n",
      "        }\n",
      "    }\n",
      "}\n"
     ]
    }
   ],
   "source": [
    "gr.ChatInterface(chat, type=\"messages\").launch()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": ".venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}