Spaces:
Sleeping
Sleeping
File size: 16,269 Bytes
6a9c9f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Judging and Routing — Optimizing Resource Usage by Evaluating Problem Complexity"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In the original Lab 2, we explored the **Orchestrator–Worker pattern**, where a planner sent the same question to multiple agents, and a judge assessed their responses to evaluate agent intelligence.\n",
"\n",
"In this notebook, we extend that design by adding multiple judges and a routing component to optimize model usage based on task complexity. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Imports and Environment Setup"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import json\n",
"from dotenv import load_dotenv\n",
"from openai import OpenAI\n",
"from anthropic import Anthropic\n",
"from IPython.display import Markdown, display"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"load_dotenv(override=True)\n",
"openai_api_key = os.getenv('OPENAI_API_KEY')\n",
"google_api_key = os.getenv('GOOGLE_API_KEY')\n",
"deepseek_api_key = os.getenv('DEEPSEEK_API_KEY')\n",
"if openai_api_key and google_api_key and deepseek_api_key:\n",
" print(\"All keys were loaded successfully\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!ollama pull llama3.2\n",
"!ollama pull mistral"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Creating Models"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The notebook uses instances of GPT, Gemini and DeepSeek APIs, along with two local models served via Ollama: ```llama3.2``` and ```mistral```."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"model_specs = {\n",
" \"gpt-4o-mini\" : None,\n",
" \"gemini-2.0-flash\": {\n",
" \"api_key\" : google_api_key,\n",
" \"url\" : \"https://generativelanguage.googleapis.com/v1beta/openai/\"\n",
" },\n",
" \"deepseek-chat\" : {\n",
" \"api_key\" : deepseek_api_key,\n",
" \"url\" : \"https://api.deepseek.com/v1\"\n",
" },\n",
" \"llama3.2\" : {\n",
" \"api_key\" : \"ollama\",\n",
" \"url\" : \"http://localhost:11434/v1\"\n",
" },\n",
" \"mistral\" : {\n",
" \"api_key\" : \"ollama\",\n",
" \"url\" : \"http://localhost:11434/v1\"\n",
" }\n",
"}\n",
"\n",
"def create_model(model_name):\n",
" spec = model_specs[model_name]\n",
" if spec is None:\n",
" return OpenAI()\n",
" \n",
" return OpenAI(api_key=spec[\"api_key\"], base_url=spec[\"url\"])"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"orchestrator_model = \"gemini-2.0-flash\"\n",
"generator = create_model(orchestrator_model)\n",
"router = create_model(orchestrator_model)\n",
"\n",
"qa_models = {\n",
" model_name : create_model(model_name) \n",
" for model_name in model_specs.keys()\n",
"}\n",
"\n",
"judges = {\n",
" model_name : create_model(model_name) \n",
" for model_name, specs in model_specs.items() \n",
" if not(specs) or specs[\"api_key\"] != \"ollama\"\n",
"}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Orchestrator-Worker Workflow"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"First, we generate a question to evaluate the intelligence of each LLM."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"request = \"Please come up with a challenging, nuanced question that I can ask a number of LLMs \"\n",
"request += \"to evaluate and rank them based on their intelligence. \" \n",
"request += \"Answer **only** with the question, no explanation or preamble.\"\n",
"\n",
"messages = [{\"role\": \"user\", \"content\": request}]\n",
"messages"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"response = generator.chat.completions.create(\n",
" model=orchestrator_model,\n",
" messages=messages,\n",
")\n",
"eval_question = response.choices[0].message.content"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"display(Markdown(eval_question))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Task Parallelization"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now, having the question and all the models instantiated it's time to see what each model has to say about the complex task it was given."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"question = [{\"role\": \"user\", \"content\": eval_question}]\n",
"answers = []\n",
"competitors = []\n",
"\n",
"for name, model in qa_models.items():\n",
" response = model.chat.completions.create(model=name, messages=question)\n",
" answer = response.choices[0].message.content\n",
" competitors.append(name)\n",
" answers.append(answer)\n",
"\n",
"answers"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"report = \"# Answer report for each of the 5 models\\n\\n\"\n",
"report += \"\\n\\n\".join([f\"## **Model: {model}**\\n\\n{answer}\" for model, answer in zip(competitors, answers)])\n",
"display(Markdown(report))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Synthetizer/Judge"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The Judge Agents ranks the LLM responses based on coherence and relevance to the evaluation prompt. Judges vote and the final LLM ranking is based on the aggregated ranking of all three judges."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"together = \"\"\n",
"for index, answer in enumerate(answers):\n",
" together += f\"# Response from competitor {index+1}\\n\\n\"\n",
" together += answer + \"\\n\\n\"\n",
"\n",
"together"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"judge_prompt = f\"\"\"\n",
" You are judging a competition between {len(competitors)} LLM competitors.\n",
" Each model has been given this nuanced question to evaluate their intelligence:\n",
"\n",
" {eval_question}\n",
"\n",
" Your job is to evaluate each response for clarity and strength of argument, and rank them in order of best to worst.\n",
" Respond with JSON, and only JSON, with the following format:\n",
" {{\"results\": [\"best competitor number\", \"second best competitor number\", \"third best competitor number\", ...]}}\n",
" With 'best competitor number being ONLY the number', for instance:\n",
" {{\"results\": [\"5\", \"2\", \"4\", ...]}}\n",
" Here are the responses from each competitor:\n",
"\n",
" {together}\n",
"\n",
" Now respond with the JSON with the ranked order of the competitors, nothing else. Do NOT include MARKDOWN FORMATTING or CODE BLOCKS. ONLY the JSON\n",
" \"\"\"\n",
"\n",
"judge_messages = [{\"role\": \"user\", \"content\": judge_prompt}]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from collections import defaultdict\n",
"import re\n",
"\n",
"N = len(competitors)\n",
"scores = defaultdict(int)\n",
"for judge_name, judge in judges.items():\n",
" response = judge.chat.completions.create(\n",
" model=judge_name,\n",
" messages=judge_messages,\n",
" )\n",
" response = response.choices[0].message.content\n",
" response_json = re.findall(r'\\{.*?\\}', response)[0]\n",
" results = json.loads(response_json)[\"results\"]\n",
" ranks = [int(result) for result in results]\n",
" print(f\"Judge {judge_name} ranking:\")\n",
" for i, c in enumerate(ranks):\n",
" model_name = competitors[c - 1]\n",
" print(f\"#{i+1} : {model_name}\")\n",
" scores[c - 1] += (N - i)\n",
" print()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"sorted_indices = sorted(scores, key=scores.get)\n",
"\n",
"# Convert to model names\n",
"ranked_model_names = [competitors[i] for i in sorted_indices]\n",
"\n",
"print(\"Final ranking from best to worst:\")\n",
"for i, name in enumerate(ranked_model_names[::-1], 1):\n",
" print(f\"#{i}: {name}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Routing Workflow"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We now define a routing agent responsible for classifying task complexity and delegating the prompt to the most appropriate model."
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"def classify_question_complexity(question: str, routing_agent, routing_model) -> int:\n",
" \"\"\"\n",
" Ask an LLM to classify the question complexity from 1 (easy) to 5 (very hard).\n",
" \"\"\"\n",
" prompt = f\"\"\"\n",
" You are a classifier responsible for assigning a complexity level to user questions, based on how difficult they would be for a language model to answer.\n",
"\n",
" Please read the question below and assign a complexity score from 1 to 5:\n",
"\n",
" - Level 1: Very simple factual or definitional question (e.g., “What is the capital of France?”)\n",
" - Level 2: Slightly more involved, requiring basic reasoning or comparison\n",
" - Level 3: Moderate complexity, requiring synthesis, context understanding, or multi-part answers\n",
" - Level 4: High complexity, requiring abstract thinking, ethical judgment, or creative generation\n",
" - Level 5: Extremely challenging, requiring deep reasoning, philosophical reflection, or long-term multi-step inference\n",
"\n",
" Respond ONLY with a single integer between 1 and 5 that best reflects the complexity of the question.\n",
"\n",
" Question:\n",
" {question}\n",
" \"\"\"\n",
"\n",
" response = routing_agent.chat.completions.create(\n",
" model=routing_model,\n",
" messages=[{\"role\": \"user\", \"content\": prompt}]\n",
" )\n",
" try:\n",
" return int(response.choices[0].message.content.strip())\n",
" except Exception:\n",
" return 3 # default to medium complexity on error\n",
" \n",
"def route_question_to_model(question: str, models_by_rank, classifier_model=router, model_name=orchestrator_model):\n",
" level = classify_question_complexity(question, classifier_model, model_name)\n",
" selected_model_name = models_by_rank[level - 1]\n",
" return selected_model_name"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"difficulty_prompts = [\n",
" \"Generate a very basic, factual question that a small or entry-level language model could answer easily. It should require no reasoning, just direct knowledge lookup.\",\n",
" \"Generate a slightly involved question that requires basic reasoning, comparison, or combining two known facts. Still within the grasp of small models but not purely factual.\",\n",
" \"Generate a moderately challenging question that requires some synthesis of ideas, multi-step reasoning, or contextual understanding. A mid-tier model should be able to answer it with effort.\",\n",
" \"Generate a difficult question involving abstract thinking, open-ended reasoning, or ethical tradeoffs. The question should challenge large models to produce thoughtful and coherent responses.\",\n",
" \"Generate an extremely complex and nuanced question that tests the limits of current language models. It should require deep reasoning, long-term planning, philosophy, or advanced multi-domain knowledge.\"\n",
"]\n",
"def generate_question(level, generator=generator, generator_model=orchestrator_model):\n",
" prompt = (\n",
" f\"{difficulty_prompts[level - 1]}\\n\"\n",
" \"Answer only with the question, no explanation.\"\n",
" )\n",
" messages = [{\"role\": \"user\", \"content\": prompt}]\n",
" response = generator.chat.completions.create(\n",
" model=generator_model, # or your planner model\n",
" messages=messages\n",
" )\n",
" \n",
" return response.choices[0].message.content\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Testing Routing Workflow"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Finally, to test the routing workflow, we create a function that accepts a task complexity level and triggers the full routing process.\n",
"\n",
"*Note: A level-N prompt isn't always assigned to the Nth-most capable model due to the classifier's subjective decisions.*"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"def test_generation_routing(level):\n",
" question = generate_question(level=level)\n",
" answer_model = route_question_to_model(question, ranked_model_names)\n",
" messages = [{\"role\": \"user\", \"content\": question}]\n",
"\n",
" response =qa_models[answer_model].chat.completions.create(\n",
" model=answer_model, # or your planner model\n",
" messages=messages\n",
" )\n",
" print(f\"Question : {question}\")\n",
" print(f\"Routed to {answer_model}\")\n",
" display(Markdown(response.choices[0].message.content))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"test_generation_routing(level=1)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"test_generation_routing(level=2)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"test_generation_routing(level=3)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"test_generation_routing(level=4)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"test_generation_routing(level=5)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|