File size: 11,069 Bytes
6a9c9f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Welcome to the Second Lab - Week 1, Day 3\n",
    "\n",
    "Today we will work with lots of models! This is a way to get comfortable with APIs."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<table style=\"margin: 0; text-align: left; width:100%\">\n",
    "    <tr>\n",
    "        <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
    "            <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
    "        </td>\n",
    "        <td>\n",
    "            <h2 style=\"color:#ff7800;\">Important point - please read</h2>\n",
    "            <span style=\"color:#ff7800;\">The way I collaborate with you may be different to other courses you've taken. I prefer not to type code while you watch. Rather, I execute Jupyter Labs, like this, and give you an intuition for what's going on. My suggestion is that you carefully execute this yourself, <b>after</b> watching the lecture. Add print statements to understand what's going on, and then come up with your own variations.<br/><br/>If you have time, I'd love it if you submit a PR for changes in the community_contributions folder - instructions in the resources. Also, if you have a Github account, use this to showcase your variations. Not only is this essential practice, but it demonstrates your skills to others, including perhaps future clients or employers...\n",
    "            </span>\n",
    "        </td>\n",
    "    </tr>\n",
    "</table>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<table style=\"margin: 0; text-align: left; width:100%\">\n",
    "    <tr>\n",
    "        <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
    "            <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
    "        </td>\n",
    "        <td>\n",
    "            <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
    "            <span style=\"color:#ff7800;\">Which pattern(s) did this use? Try updating this to add another Agentic design pattern.\n",
    "            </span>\n",
    "        </td>\n",
    "    </tr>\n",
    "</table>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# ReAct Pattern"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "metadata": {},
   "outputs": [],
   "source": [
    "import openai\n",
    "import os\n",
    "from dotenv import load_dotenv\n",
    "import io\n",
    "from anthropic import Anthropic\n",
    "from IPython.display import Markdown, display"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Print the key prefixes to help with any debugging\n",
    "\n",
    "openai_api_key = os.getenv('OPENAI_API_KEY')\n",
    "anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')\n",
    "google_api_key = os.getenv('GOOGLE_API_KEY')\n",
    "deepseek_api_key = os.getenv('DEEPSEEK_API_KEY')\n",
    "groq_api_key = os.getenv('GROQ_API_KEY')\n",
    "\n",
    "if openai_api_key:\n",
    "    print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
    "else:\n",
    "    print(\"OpenAI API Key not set\")\n",
    "    \n",
    "if anthropic_api_key:\n",
    "    print(f\"Anthropic API Key exists and begins {anthropic_api_key[:7]}\")\n",
    "else:\n",
    "    print(\"Anthropic API Key not set (and this is optional)\")\n",
    "\n",
    "if google_api_key:\n",
    "    print(f\"Google API Key exists and begins {google_api_key[:2]}\")\n",
    "else:\n",
    "    print(\"Google API Key not set (and this is optional)\")\n",
    "\n",
    "if deepseek_api_key:\n",
    "    print(f\"DeepSeek API Key exists and begins {deepseek_api_key[:3]}\")\n",
    "else:\n",
    "    print(\"DeepSeek API Key not set (and this is optional)\")\n",
    "\n",
    "if groq_api_key:\n",
    "    print(f\"Groq API Key exists and begins {groq_api_key[:4]}\")\n",
    "else:\n",
    "    print(\"Groq API Key not set (and this is optional)\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 50,
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "from openai import OpenAI\n",
    "\n",
    "openai = OpenAI()\n",
    "\n",
    "# Request prompt\n",
    "request = (\n",
    "    \"Please come up with a challenging, nuanced question that I can ask a number of LLMs to evaluate their intelligence. \"\n",
    "    \"Answer only with the question, no explanation.\"\n",
    ")\n",
    "\n",
    "\n",
    "\n",
    "def generate_question(prompt: str) -> str:\n",
    "    response = openai.chat.completions.create(\n",
    "        model='gpt-4o-mini',\n",
    "        messages=[{'role': 'user', 'content': prompt}]\n",
    "    )\n",
    "    question = response.choices[0].message.content\n",
    "    return question\n",
    "\n",
    "def react_agent_decide_model(question: str) -> str:\n",
    "    prompt = f\"\"\"\n",
    "            You are an intelligent AI assistant tasked with evaluating which language model is most suitable to answer a given question.\n",
    "\n",
    "            Available models:\n",
    "            - OpenAI: excels at reasoning and factual answers.\n",
    "            - Claude: better for philosophical, nuanced, and ethical topics.\n",
    "            - Gemini: good for concise and structured summaries.\n",
    "            - Groq: good for creative or exploratory tasks.\n",
    "            - DeepSeek: strong at coding, technical reasoning, and multilingual responses.\n",
    "\n",
    "            Here is the question to answer:\n",
    "            \"{question}\"\n",
    "\n",
    "            ### Thought:\n",
    "            Which model is best suited to answer this question, and why?\n",
    "\n",
    "            ### Action:\n",
    "            Respond with only the model name you choose (e.g., \"Claude\").\n",
    "                \"\"\"\n",
    "\n",
    "    response = openai.chat.completions.create(\n",
    "        model=\"o3-mini\",\n",
    "        messages=[{\"role\": \"user\", \"content\": prompt}]\n",
    "    )\n",
    "    model = response.choices[0].message.content.strip()\n",
    "    return model\n",
    "\n",
    "def generate_answer_openai(prompt):\n",
    "    answer = openai.chat.completions.create(\n",
    "            model='gpt-4o-mini',\n",
    "            messages=[{'role': 'user', 'content': prompt}]\n",
    "        ).choices[0].message.content\n",
    "    return answer\n",
    "\n",
    "def generate_answer_anthropic(prompt):\n",
    "    anthropic = Anthropic(api_key=anthropic_api_key)\n",
    "    model_name = \"claude-3-5-sonnet-20240620\"\n",
    "    answer = anthropic.messages.create(\n",
    "            model=model_name,\n",
    "            messages=[{'role': 'user', 'content': prompt}],\n",
    "            max_tokens=1000\n",
    "        ).content[0].text\n",
    "    return answer\n",
    "\n",
    "def generate_answer_deepseek(prompt):\n",
    "    deepseek = OpenAI(api_key=deepseek_api_key, base_url=\"https://api.deepseek.com/v1\")\n",
    "    model_name = \"deepseek-chat\"    \n",
    "    answer = deepseek.chat.completions.create(\n",
    "            model=model_name,\n",
    "            messages=[{'role': 'user', 'content': prompt}],\n",
    "            base_url='https://api.deepseek.com/v1'\n",
    "        ).choices[0].message.content\n",
    "    return answer\n",
    "\n",
    "def generate_answer_gemini(prompt):\n",
    "    gemini=OpenAI(base_url='https://generativelanguage.googleapis.com/v1beta/openai/',api_key=google_api_key)\n",
    "    model_name = \"gemini-2.0-flash\"\n",
    "    answer = gemini.chat.completions.create(\n",
    "            model=model_name,\n",
    "            messages=[{'role': 'user', 'content': prompt}],\n",
    "        ).choices[0].message.content\n",
    "    return answer\n",
    "\n",
    "def generate_answer_groq(prompt):\n",
    "    groq=OpenAI(base_url='https://api.groq.com/openai/v1',api_key=groq_api_key)\n",
    "    model_name=\"llama3-70b-8192\"\n",
    "    answer = groq.chat.completions.create(\n",
    "            model=model_name,\n",
    "            messages=[{'role': 'user', 'content': prompt}],\n",
    "            base_url=\"https://api.groq.com/openai/v1\"\n",
    "        ).choices[0].message.content\n",
    "    return answer\n",
    "\n",
    "def main():\n",
    "    print(\"Generating question...\")\n",
    "    question = generate_question(request)\n",
    "    print(f\"\\n🧠 Question: {question}\\n\")\n",
    "    selected_model = react_agent_decide_model(question)\n",
    "    print(f\"\\n🔹 {selected_model}:\\n\")\n",
    "    \n",
    "    if selected_model.lower() == \"openai\":\n",
    "        answer = generate_answer_openai(question)\n",
    "    elif selected_model.lower() == \"deepseek\":\n",
    "        answer = generate_answer_deepseek(question)\n",
    "    elif selected_model.lower() == \"gemini\":\n",
    "        answer = generate_answer_gemini(question)\n",
    "    elif selected_model.lower() == \"groq\":\n",
    "        answer = generate_answer_groq(question)\n",
    "    elif selected_model.lower() == \"claude\":\n",
    "        answer = generate_answer_anthropic(question)\n",
    "    print(f\"\\n🔹 {selected_model}:\\n{answer}\\n\")\n",
    "    \n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "main()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<table style=\"margin: 0; text-align: left; width:100%\">\n",
    "    <tr>\n",
    "        <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
    "            <img src=\"../assets/business.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
    "        </td>\n",
    "        <td>\n",
    "            <h2 style=\"color:#00bfff;\">Commercial implications</h2>\n",
    "            <span style=\"color:#00bfff;\">These kinds of patterns - to send a task to multiple models, and evaluate results,\n",
    "            are common where you need to improve the quality of your LLM response. This approach can be universally applied\n",
    "            to business projects where accuracy is critical.\n",
    "            </span>\n",
    "        </td>\n",
    "    </tr>\n",
    "</table>"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": ".venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.4"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}