File size: 9,393 Bytes
6a9c9f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import streamlit as st
import os
from openai import OpenAI
from anthropic import Anthropic
import pdfplumber
from io import StringIO
from dotenv import load_dotenv
import pandas as pd
from multi_file_ingestion import load_and_split_resume

# Load environment variables
load_dotenv(override=True)
openai_api_key = os.getenv("OPENAI_API_KEY")
anthropic_api_key = os.getenv("ANTHROPIC_API_KEY")
google_api_key = os.getenv("GOOGLE_API_KEY")
groq_api_key = os.getenv("GROQ_API_KEY")
deepseek_api_key = os.getenv("DEEPSEEK_API_KEY")

openai = OpenAI()

# Streamlit UI
st.set_page_config(page_title="LLM Resume–JD Fit", layout="wide")
st.title("🧠 Multi-Model Resume–JD Match Analyzer")

# Inject custom CSS to reduce white space
st.markdown("""
    <style>
        .block-container {
            padding-top: 3rem; /* instead of 1rem */
            padding-bottom: 1rem;
        }
        .stMarkdown {
            margin-bottom: 0.5rem;
        }
        .logo-container img {
            width: 50px;
            height: auto;
            margin-right: 10px;
        }
        .header-row {
            display: flex;
            align-items: center;
            gap: 1rem;
            margin-top: 1rem; /* Add extra top margin here if needed */
        }
    </style>
""", unsafe_allow_html=True)

# File upload
resume_file = st.file_uploader("📄 Upload Resume (any file type)", type=None)
jd_file = st.file_uploader("📝 Upload Job Description (any file type)", type=None)

# Function to extract text from uploaded files
def extract_text(file):
    if file.name.endswith(".pdf"):
        with pdfplumber.open(file) as pdf:
            return "\n".join([page.extract_text() for page in pdf.pages if page.extract_text()])
    else:
        return StringIO(file.read().decode("utf-8")).read()


def extract_candidate_name(resume_text):
    prompt = f"""
You are an AI assistant specialized in resume analysis.

Your task is to get full name of the candidate from the resume.

Resume:
{resume_text}

Respond with only the candidate's full name.
""" 
    try:
        response = openai.chat.completions.create(
            model="gpt-4o-mini",
            messages=[
                {"role": "system", "content": "You are a professional resume evaluator."},
                {"role": "user", "content": prompt}
            ]
        )
        content = response.choices[0].message.content
        
        return content.strip()

    except Exception as e:
        return "Unknown"


# Function to build the prompt for LLMs
def build_prompt(resume_text, jd_text):
    prompt = f"""
You are an AI assistant specialized in resume analysis and recruitment. Analyze the given resume and compare it with the job description. 

Your task is to evaluate how well the resume aligns with the job description.


Provide a match percentage between 0 and 100, where 100 indicates a perfect fit.

Resume:
{resume_text}

Job Description:
{jd_text}

Respond with only the match percentage as an integer.
"""
    return prompt.strip()

# Function to get match percentage from OpenAI GPT-4
def get_openai_match(prompt):
    try:
        response = openai.chat.completions.create(
            model="gpt-4o-mini",
            messages=[
                {"role": "system", "content": "You are a professional resume evaluator."},
                {"role": "user", "content": prompt}
            ]
        )
        content = response.choices[0].message.content
        digits = ''.join(filter(str.isdigit, content))
        return min(int(digits), 100) if digits else 0
    except Exception as e:
        st.error(f"OpenAI API Error: {e}")
        return 0

# Function to get match percentage from Anthropic Claude
def get_anthropic_match(prompt):
    try:
        model_name = "claude-3-7-sonnet-latest"
        claude = Anthropic()
        
        message = claude.messages.create(
            model=model_name,
            max_tokens=100,
            messages=[
                {"role": "user", "content": prompt}
            ]
        )
        content = message.content[0].text
        digits = ''.join(filter(str.isdigit, content))
        return min(int(digits), 100) if digits else 0
    except Exception as e:
        st.error(f"Anthropic API Error: {e}")
        return 0

# Function to get match percentage from Google Gemini
def get_google_match(prompt):
    try:
        gemini = OpenAI(api_key=google_api_key, base_url="https://generativelanguage.googleapis.com/v1beta/openai/")
        model_name = "gemini-2.0-flash"
        messages = [{"role": "user", "content": prompt}]
        response = gemini.chat.completions.create(model=model_name, messages=messages)
        content = response.choices[0].message.content
        digits = ''.join(filter(str.isdigit, content))
        return min(int(digits), 100) if digits else 0
    except Exception as e:
        st.error(f"Google Gemini API Error: {e}")
        return 0

# Function to get match percentage from Groq
def get_groq_match(prompt):
    try:
        groq = OpenAI(api_key=groq_api_key, base_url="https://api.groq.com/openai/v1")
        model_name = "llama-3.3-70b-versatile"
        messages = [{"role": "user", "content": prompt}]
        response = groq.chat.completions.create(model=model_name, messages=messages)
        answer = response.choices[0].message.content
        digits = ''.join(filter(str.isdigit, answer))
        return min(int(digits), 100) if digits else 0
    except Exception as e:
        st.error(f"Groq API Error: {e}")
        return 0

# Function to get match percentage from DeepSeek
def get_deepseek_match(prompt):
    try:
        deepseek = OpenAI(api_key=deepseek_api_key, base_url="https://api.deepseek.com/v1")
        model_name = "deepseek-chat"
        messages = [{"role": "user", "content": prompt}]
        response = deepseek.chat.completions.create(model=model_name, messages=messages)
        answer = response.choices[0].message.content
        digits = ''.join(filter(str.isdigit, answer))
        return min(int(digits), 100) if digits else 0
    except Exception as e:
        st.error(f"DeepSeek API Error: {e}")
        return 0

# Main action
if st.button("🔍 Analyze Resume Fit"):
    if resume_file and jd_file:
        with st.spinner("Analyzing..."):
            # resume_text = extract_text(resume_file)
            # jd_text = extract_text(jd_file)
            os.makedirs("temp_files", exist_ok=True)
            resume_path = os.path.join("temp_files", resume_file.name)
    
            with open(resume_path, "wb") as f:
                f.write(resume_file.getbuffer())
            resume_docs = load_and_split_resume(resume_path)
            resume_text = "\n".join([doc.page_content for doc in resume_docs])

            jd_path = os.path.join("temp_files", jd_file.name)  
            with open(jd_path, "wb") as f:
                f.write(jd_file.getbuffer())
            jd_docs = load_and_split_resume(jd_path)
            jd_text = "\n".join([doc.page_content for doc in jd_docs])

            candidate_name = extract_candidate_name(resume_text)
            prompt = build_prompt(resume_text, jd_text)

            # Get match percentages from all models
            scores = {
                "OpenAI GPT-4o Mini": get_openai_match(prompt),
                "Anthropic Claude": get_anthropic_match(prompt),
                "Google Gemini": get_google_match(prompt),
                "Groq": get_groq_match(prompt),
                "DeepSeek": get_deepseek_match(prompt),
            }

            # Calculate average score
            average_score = round(sum(scores.values()) / len(scores), 2)

            # Sort scores in descending order
            sorted_scores = sorted(scores.items(), reverse=False)

            # Display results
            st.success("✅ Analysis Complete")
            st.subheader("📊 Match Results (Ranked by Model)")

            # Show candidate name
            st.markdown(f"**👤 Candidate:** {candidate_name}")

            # Create and sort dataframe
            df = pd.DataFrame(sorted_scores, columns=["Model", "% Match"])
            df = df.sort_values("% Match", ascending=False).reset_index(drop=True)

            # Convert to HTML table
            def render_custom_table(dataframe):
                table_html = "<table style='border-collapse: collapse; width: auto;'>"
                # Table header
                table_html += "<thead><tr>"
                for col in dataframe.columns:
                    table_html += f"<th style='text-align: center; padding: 8px; border-bottom: 1px solid #ddd;'>{col}</th>"
                table_html += "</tr></thead>"

                # Table rows
                table_html += "<tbody>"
                for _, row in dataframe.iterrows():
                    table_html += "<tr>"
                    for val in row:
                        table_html += f"<td style='text-align: left; padding: 8px; border-bottom: 1px solid #eee;'>{val}</td>"
                    table_html += "</tr>"
                table_html += "</tbody></table>"
                return table_html

            # Display table
            st.markdown(render_custom_table(df), unsafe_allow_html=True)

            # Show average match
            st.metric(label="📈 Average Match %", value=f"{average_score:.2f}%")
    else:
        st.warning("Please upload both resume and job description.")